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Methodological approaches in Social Neuroscience have been
rapidly evolving in recent years. Fueling these changes is the
adoption of a variety of multivariate approaches that allow re-
searchers to ask a wider and richer set of questions than previ-
ously possible with standard univariate methods. In this chap-
ter, we introduce several of the most popular multivariate meth-
ods and discuss how they can be used to advance our under-
standing of how social cognition and personality processes are
represented in the brain. These methods have the potential to
allow neuroscience measures to inform and advance theories in
Social and Personality Psychology more directly and are likely
to become the dominant approaches in Social Neuroscience in
the near future.

Note: This is a forthcoming chapter for the Handbook of Re-
search Methods in Social and Personality Psychology. The final
version may differ from the version here.

Neuroscience methods have been a part of social and person-
ality psychology for several decades (Cacioppo & Berntson,
1992). In this time, the once nascent field of social neu-
roscience has grown from niche interest to a rapidly ma-
turing research area, spawning its own theoretical contribu-
tions and debates. By now, many social and personality
psychologists have a basic familiarity with how neuroimag-
ing methods and approaches are used in social neuroscience.
However, many of these researchers may also be less aware
of some of the major shifts and advancements in multi-
variate approaches—pioneered for functional magnetic res-
onance imaging (fMRI)—in social neuroscience that allow
researchers to ask a much broader and richer set of questions
than previously possible.

Early fMRI work in social neuroscience borrowed
from standard methodological approaches in cognitive neu-
roscience. For example, to determine whether there are face
specific regions of the brain, researchers might show pic-
tures of faces and other stimuli to participants during fMRI
scanning. In each part of the brain, researchers would fit a
model to estimate a response to each type of stimulus (e.g., a
face or a house). This would be done across every voxel—a
volumetric pixel at one place in the brain that used as the
unit of measurement in neuroimaging—one at a time. These
responses would then be contrasted against the other stim-
uli at each voxel to test where there was a greater response
to one condition versus another. This process would be re-

peated, one-by-one, for every voxel throughout the brain. In
the example here, researchers have consistently found that
one area, the Fusiform Face Area (FFA) tends to show the
most activation to faces, whereas another, the Parihippocam-
pal Place Area (PPA) tends to show the most activation to
houses/places. To make this discovery each and every voxel
in the brain needed to be compared (upwards of tens of thou-
sands of brain voxels) to determine which were more face
specific, which were more place specific, and which did not
seem to show a preference for one over the other. Given the
number of comparisons, researchers would often use sophis-
ticated clustering methods (a voxel would be deemed signifi-
cant only if it reached a conservative significant threshold and
was surrounded by other voxels that also were significant),
which would then be applied to ensure statistical robustness
across these multiple comparisons. A description of these
methods accessible to social and personality psychologists
and a summary of their primary strengths and limitations can
be found in the previous edition of his Handbook (Berkman
et al., 2014). Many of these methods are critical and remain
the benchmark of how we estimate brain responses at each
voxel of the brain.

However, we also know that parts of the brain within
these voxels do not work in isolation. The brain is a mas-
sively intricate parallel processing system, and it is a tru-
ism that complex cognitive and behavioral phenomena al-
most never have a simple one-to-one mapping with individual
regions of the brain (Cacioppo et al., 2003). For example, it
could be that the same brain region as a whole is active for
two tasks, but it might be doing two very different things.
Analytic tools need to incorporate brain responses from dif-
ferent areas simultaneously to more realistically model how
information is represented across systems of the brain. To
meet the challenge of understanding how psychological pro-
cesses are represented in the brain, researchers have devel-
oped a suite of quantitative approaches that leverage the mul-
tivariate nature of brain imaging data. These methods do not
consider each voxel in isolation from one another, but rather
assume that brain function can be identified by looking for
patterns of activation – activation in voxel 1 may mean some-
thing quite different when paired with activation in voxel 2
versus voxel 3. Multivariate approaches have become cen-
tral to contemporary social neuroscience and have shaped the
kinds of questions that can be asked and inferences that are
afforded. As such, the focus of this chapter is on recent ad-
vancements in multivariate neuroimaging methods and how
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they have been utilized to inform social and personality psy-
chology. The bulk of these advancements augment traditional
approaches to neuroimaging rather than replace them. Con-
temporary research deploys a range of methods, including a
mixture of univariate and multivariate tools, depending on
their ability to answer the research question at hand. Fur-
thermore, although this chapter will mostly focus on fMRI
methods, these multivariate approaches can, in principle, be
applied to any neuroimaging or psychophysiological modal-
ity where simultaneous recordings are captured from multi-
ple sites. (The use of multivariate approaches in non-MRI
research will be highlighted briefly later.) The goal of this
chapter is to introduce these contemporary methodological
approaches in social neuroscience and to refashion readers’
views of the role of neuroimaging in social and personality
psychology.

History & Utility of Multivariate Neuroimaging
Faces of Change.
Social neuroscience employs several different techniques to
characterize how psychological phenomena are reflected in
the brain. For years, techniques such as electroencephalogra-
phy (measuring scalp electrical current as an index of neural
activity) and positron emission tomography (measuring the
slow decay of radioactive tracers injected into a participant)
were the most commonly used modalities in human neuro-
science. By the early 2000s, however, fMRI had come to
dominate the landscape of high-profile studies of the brain
basis of social cognition. This method had better spatial res-
olution than electroencephalography and better temporal res-
olution than positron emission tomography and sat as a com-
promise between the two. Traditional approaches to fMRI
analysis—referred to as univariate approaches—considered
each part of the brain individually. As the face example
above illustrated, researchers would measure brain responses
to a particular stimulus category within individual voxels
and contrast those with responses to a different category of
stimuli (faces vs houses; White-American vs Black Ameri-
can faces; stimuli associated with monetary rewards or foot
shocks). If the difference in responses is large enough in a
voxel, one can infer that there was greater activation in a re-
gion for one condition than another. When done with well-
controlled conditions, this approach is a useful technique for
establishing the location of what parts of the brain are differ-
entially responsive when people engage in social cognition or
processing socially relevant information.

One of the most immediate and important sources of so-
cial information is the face. In the early years of fMRI, there
was much interest in the neural basis of facial processing.
In a landmark study, Kanwisher et al., (1997) demonstrated
that a portion of the right ventral temporal lobe called the
fusiform gyrus was reliably and robustly active to faces more
than any other visual object category using standard univari-
ate methods. This region was dubbed the fusiform face area
(FFA) and early studies claimed that this was a category-
specific brain module for facial processing (Kanwisher et al.,
1997). However, the initial interpretations of these findings

were challenged a few years later. In a seminal paper, Haxby
et al., (2001) used a multivariate approach and found that,
although the FFA was more responsive to faces than other
regions were, distributed patterns of activity within the FFA
could accurately dissociate multiple object categories, mean-
ing it can distinguish categories from each other on the basis
of their activity pattern. In other words, there was more ac-
tivation for faces compared to other objects when blurring
across all voxels within these regions - a quantitative differ-
ence. But, these regions showed unique patterns when exam-
ining all the individual voxels – a qualitative distinction. This
result suggests that although the FFA shows the strongest ac-
tivity to faces per the univariate analysis, general object cat-
egorization is also represented in patterns of activity that are
distributed across voxels in FFA and can be captured by these
multivariate methods. Despite having seemingly contradic-
tory interpretations of the FFA data, both findings have been
replicated dozens of times and are well established effects
(Duchaine & Yovel, 2015).

The contrast between the results from univariate and
multivariate approaches simply indicates that the classes of
methods address different questions (Jimura & Poldrack,
2012). Classic univariate methods, such as the ones de-
ployed by Kanwisher and colleagues, are based on identi-
fying regions where there are differences in the magnitude
of the response between stimulus classes. Thus, if the re-
search question is “what part of the brain responds more to
faces than other categories?” univariate methods are powerful
and appropriate. Multivariate methods—referred to as mul-
tivariate pattern analysis (MVPA)—answer different ques-
tions. Rather than asking where there is a greater response
to a stimulus, MVPA asks whether information related to a
psychological process can be statistically decoded, or repre-
sented by a weighted combination of voxel activity, within
distributed patterns of activity in multiple voxels of a given
region irrespective of the magnitude of its average response.
For example, a portion of the dorsal anterior cingulate cortex
is implicated in processing both physical pain and social pain
(Eisenberger, Lieberman, & Williams, 2003). However, Woo
et al. (2014) used MVPA to show that these two conditions
are reliably distinguished based on the patterns of voxel acti-
vation, even when they have similar activation across all the
voxels on average. Similarly, returning to the domain of face
processing, although FFA has a greater average response to
faces than other categories, MVPA methods can accurately
detect the percept of other object categories within the same
region due to their distributed patterns (see: Figure 1). Haxby
et al. (2001) was not the first paper to deploy multivariate
methods in fMRI (see: McIntosh et al., 1996) but that paper
is often cited as the one that pioneered MVPA and was the
basis for many of the advancements that followed. Since this
early work, a variety of MVPA methods have been developed
to answer different kinds of questions.

Rethinking Neuroimaging for Social & Personality
Psychology.
Though the focus away from magnitude differences to dis-
tributed activity patterns may seem like a subtle shift, it ac-
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Fig. 1. Schematic of Univariate and Multivariate Brain Responses.The basic unit of measurement of the brain using neuroimaging are volumetric pixels called voxels. When
measuring their response to different stimulus categories (e.g., shoes, houses, or faces), response activity is measured in each voxel of a given region. In univariate analyses,
activity is averaged across all the voxels within the region to test whether there is a greater response for one category versus another in that region. In multivariate analyses,
voxels are not averaged or aggregated but instead used in a multi-variable framework. This schematic shows an example of a case in which there is no average univariate
difference between shoe and house categories but markedly different multivariate patterns of response while maintaining both multivariate and univariate differences in
responses to faces.

tually requires a fundamental rethinking of how to ask ques-
tions and generate hypotheses. Within the traditional uni-
variate framework, a researcher might ask a question like:
“which parts of the brain are more active for perceiving hu-
mans compared to animals?” On the other hand, within an
MVPA framework, a question would instead be: “where
does information in the brain dissociate perceiving humans
from animals?” Notice that the MVPA framework does not
make assumptions about the direction (whether the brain area
showed more or less activation to resting brain activity) nor
the strength of the responses, but rather allows the patterns
of activation to inform the representation of the two percep-
tions. In other words, univariate methods ask about the loca-
tion of the activation and multivariate methods ask about the
patterns of activation. Because the mean signal is removed
in multivariate methods, these methods provide independent
information about the nature of brain activation. As such,
MVPA methods provide answers to questions about not only
the parts of the brain involved with a given mental process,
but also the implementation of mental processes within them.
The relatively greater level of detail and sensitivity about the
function and structure of the human brain afforded by MVPA
can be more useful than univariate methods to inform theory
in social and personality psychology.

One of the main challenges in cognitive neuroscience
is the problem of reverse inference (Poldrack, 2011). Many
psychologists using neuroimaging not only want to show
which parts of the brain are involved with a mental process
(“forward inference”), but also want to be able to infer “back-

wards” that, when a pattern of activation is apparent in the
data, a given mental process is being engaged. Because there
is no simple one-to-one mapping of activation within a re-
gion to complex social cognitive processes, the mere obser-
vation of activation in a particular region to a given stimu-
lus is not sufficient to infer that a particular mental process
is being engaged. However, because MVPA quantifies how
strongly a pattern of activity correlates with a mental pro-
cess, it provides a framework for developing a formal means
to implement reverse inference (Poldrack, 2011). As such,
MVPA methods provide a tractable approach for testing the
neural mechanisms of how psychological processes are rep-
resented in the brain in a way that is better aligned with our
understanding of the brain as a massively parallel processing
system.

Because of the possibility for more accurate reverse
inference, MVPA has greater promise for informing social
and personality psychological theorizing than univariate ap-
proaches. However, effectively applying these methods also
requires a greater degree of sophistication in the understand-
ing of both quantitative methods and neurobiological sys-
tems. In the next section, we describe different ways to im-
plement MVPA. Each of these approaches is powerful, but
they can only be as useful as the psychological theories and
paradigms on which they are based. A deep understanding of
psychological and analytical sides is required to make fruit-
ful connections between the levels of analysis. Thoughtfully
and intentionally bringing multivariate approaches into so-
cial and personality psychology research will not only help
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advance psychological theories, but in turn help neuroscien-
tists better understand the organization of the brain based on
our best understanding of social cognition, personality, and
behavior.

Varieties of Multivariate Pattern Analysis
MVPA is an umbrella term used to capture a variety of
methods that use brain responses that are distributed across
multiple voxels to make inferences about mental representa-
tions and other psychological processes. The most common
MVPA methods used in social neuroscience have a variety of
applications, though they all utilize multivariate fMRI activ-
ity measured across multiple voxels.

Classification.
In a typical fMRI experiment, the stimulus categories are
treated as the independent variables to make inferences about
brain responses, the dependent variable. MVPA classification
turns this equation around. Instead of using stimulus cate-
gories to predict brain responses, classification approaches
use the multi-voxel brain response patterns as the indepen-
dent variable to make predictions about the stimulus cat-
egories (i.e., classify them). This was the approach used
in the paper described above where Haxby and colleagues
(2001) determined if activation patterns in the FFA could cor-
rectly dissociate multiple visual stimulus categories besides
just faces.

MVPA classification studies aim to test whether patterns
of brain activation can reliably classify, or dissociate, two or
more mental states or stimulus types (Wagner et al., 2019).
Contemporary MVPA classification studies now use machine
learning algorithms, though early classification work used fa-
miliar statistical methods such as correlation analysis, linear
discriminant analysis, or logistic regression. The most com-
monly used machine learning methods in MVPA classifica-
tion studies include support vector machines, naive Bayes,
and random forest models. There are a variety of differences
in these algorithms, the details of which are beyond the scope
of this chapter. However, each of these and other similar al-
gorithms were imported from statistics and computer science
fields and the choice of which to use can depend on a va-
riety of factors related to the type of data being collected
and the availability of computational resources for process-
ing those data. In practice, however, there usually are not
large differences in the conclusions drawn from using any
of the standard machine learning algorithms and most have
been demonstrated to have greater sensitivity for dissociating
among category types (Haxby, 2012).

As with the application of machine learning methods in
any area, one concern is that the increased sensitivity to the
underlying signal also increases the vulnerability of overfit-
ting responses to noise. If a machine learning algorithm de-
tects a pattern in the data, it will leverage that pattern as part
of its prediction even if the pattern is unrelated to the true sig-
nal. For this reason, common practice is to make inferences
on the basis of an out-of-sample prediction model, where
classification algorithms are first trained on subsets of the

data (e.g., 75% of it) before being evaluated on independent
portions of the data that are left out of the original analyses
(e.g., the remaining 25%). For example, suppose a researcher
is interested in using brain responses to classify which of four
different emotional facial expressions a participant is view-
ing (e.g., happy, angry, surprised, disgusted) collected in four
separate runs of the paradigm. Typically, the classification al-
gorithm would be trained to dissociate each of the categories
in three runs of the fMRI paradigm before being tested on
the held-out run for accuracy. This train-then-test procedure
is then repeated iteratively with each run serving as the test-
ing data set. The classification results are then aggregated
across each iteration and reported as average accuracy scores
for each participant with the standard deviation indicating
variation in accuracy across runs. Finally, this is repeated
for all participants and final statistical analyses are performed
to determine if accuracy scores are consistent across partici-
pants, typically using a non-parametric t-test against chance-
level performance. Non-parametric methods do not make the
same assumptions of normality as standard parametric t-tests.
Because classification accuracies are typically not normally
distributed, non-parametric methods are important for robust
inferences. Classification algorithms often leverage within-
subjects designs to capitalize on the large quantity of data per
subject and control for person-to-person variation, so they do
not necessarily require greater sample sizes than univariate
methods. However, they may require more data or runs per
subject (Coutanche & Thompson-Schill, 2012).

MVPA classification studies have been employed in a
variety of different paradigms to study social cognition. In
one study by Hassabis et al., (2014) participants were in-
structed to learn the personalities of four novel individuals
and imagine how each would behave in different scenarios.
Using MVPA classification, the authors were able to accu-
rately identify which person was being imagined based on ac-
tivity patterns in a portion of the medial prefrontal cortex. Al-
though univariate methods had suggested this portion of the
brain was associated with social cognition in general (Denny
et al., 2012), the Hassabis study demonstrated that multivari-
ate patterns of activity can not only dissociate thinking about
people versus not thinking about people, but also identify in-
formation about specific individuals.

Beyond identifying regions of the brain that contain de-
tailed information about social cognitive processing, classi-
fication analyses can also be used to test psychological the-
ory. For example, people often describe their personal rela-
tionships in terms that are literally about physical space: “I
am very close with my sister” or “my best friend and I have
drifted apart lately.” Is this just a metaphorical quirk of the
way we use language, or do our minds use the same mech-
anisms to compute distances across a variety of domains?
Parkinson et al. (2014) answered these questions in a study
where participants viewed stimuli that varied in spatial dis-
tance (close vs. far), temporal distance (sooner vs. later),
and social distance (friend vs acquaintance). In a clever use
of MVPA classification, these researchers trained on one do-
main and tested in the other two for each iteration of this
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design. For example, a classifier was trained to differentiate
sooner from later and then tested on stimuli that varied on so-
cial distance. If there is a reliable decision boundary between
closer and further distances across conceptual domains then
the cross-domain MVPA classification approach will iden-
tify parts of the brain that are shared across spatial, tem-
poral, and social domains. Indeed, Parkinson et al., (2014)
found that the right inferior parietal lobule – an area thought
to be involved in sensorimotor transformations of informa-
tion - showed consistent cross-domain classification across
all three domains. Though previous studies had shown that
this region was important for computing information related
to numeric processing (Eger et al., 2009), univariate meth-
ods limited the ability to test hypotheses about how these this
processing might be serving social cognitive processing too.
This finding provides evidence that there is a common corti-
cal mechanism supporting the dissociation between each of
the three domains and suggests that the construal of interper-
sonal distance is built from more general cognitive mecha-
nisms serving multiple psychological processes.

To summarize, MVPA classification studies provide a
robust method for decoding categories of experimental con-
ditions. Although it often requires more data for cross-
validation, MVPA classification is more sensitive than tra-
ditional univariate approaches in decoding information about
mental states and can reveal information that is represented
in distributed patterns of responses rather than simple magni-
tude differences.

Representational Similarity Analysis.
Classification methods in MVPA are powerful techniques for
decoding category-level information with a given brain re-
gion. However, these techniques are not optimal for directly
comparing hypothesized models (Popal et al., 2019). For ex-
ample, it may be possible to use MVPA to accurately classify
human faces, animal faces, and inanimate objects. However,
if your theories suggests that human and animal faces should
be more related to each other than they are to the inanimate
objects, then classification accuracies alone cannot address
this question. Another MVPA technique called representa-
tional similarity analysis (RSA) addresses some of the limi-
tations of MVPA classification and is rapidly gaining popu-
larity in MVPA studies in social neuroscience.

RSA is a procedure for measuring the conceptual dis-
tances among categories by quantifying the similarities of
their voxel-wise activity patterns (Kriegeskorte, Mur, & Ban-
dettini, 2008). By abstracting away from the fMRI signal
into similarity space (i.e., distance or correlation matrices of
voxel-by-voxel responses), researchers can quantitatively de-
scribe the relationships among each of the categories and test
hypotheses about similarity that are derived from any other
kind of information, including behavioral data or theoretical
models. For example, suppose a researcher is interested in
whether participants perceive animal faces as more human-
like than inanimate object categories. Rather than just asking
if an algorithm can accurately classify each condition (as in
MVPA classification), the researcher can calculate the corre-
lation distances (e.g., 1 - Spearman r) among patterns of re-

sponses to each stimulus within a given region of the brain to
create a matrix that indicates the magnitude of the difference
in neural response between the categories, known as a neural
dissimilarity matrix (Figure 2a). Once these neural dissim-
ilarity matrices are calculated, dissimilarity values between
pairs of stimuli can then be related against any number of
predicted similarity structures derived from competing the-
oretical models (Figure 2b) or separate behavioral data. The
models can then be formally compared in a regression frame-
work to determine which one most accurately describes the
data.

At its core, RSA is a straightforward method: calcu-
late the similarity between brain responses to stimuli and re-
late those to similarity structures derived from other sources.
The power of RSA derives from its ability to abstract fMRI
signals into similarity space among stimuli, which affords a
comparison across any modality that can produce a similarity
matrix among the same stimuli. For example, in an early pa-
per using RSA, Kriegeskorte, Mur, Ruff, et al. (2008) inves-
tigated whether brain responses to different object categories
were shared between human fMRI data and single-cell elec-
trical recordings in monkeys. For example, do humans and
monkeys make similar differentiations between nature and
artificial objects, and animate and inanimate objects. Be-
cause the humans and monkeys viewed all the same objects,
a common similarity structure could be constructed within
each species using their respective brain measure modality.
Indeed, despite differences in brain measure modality, the au-
thors were able to relate these two sources of data to find a
strong correspondence between the two species. These re-
sults demonstrate that there may be relatively preserved ob-
ject categories that are shared across species and not modi-
fied by language or other species-specific cognitive faculties.
This study underscores how useful and flexible leveraging
similarity spaces can be for describing the organization of
mental constructs in the brain by allowing for fusing of data
that would otherwise be impossible to compare.

Of course, RSA also brings unique challenges and deci-
sion points. One issue is the level of granularity at which to
calculate a neural dissimilarity matrix. RSA methods make
it possible to calculate similarity matrices at the item-level
(Mumford et al., 2014) as well as calculate dissimilarity ma-
trices at the category-level by aggregating across multiple tri-
als within categories. The decision to choose item-level or
category-level similarity depends on a number of factors re-
lated to the design of the study, the amount of data collected,
and the details of the hypothesis being tested. Similar to be-
havioral paradigms, the more trials per condition the greater
power there will be to estimate responses to that condition
and be able to generalize to other exemplars from those con-
ditions. Another issue is the scope of the brain areas you
want included in the calculation of the neural similarity ma-
trices. An RSA framework allows dissimilarity measures to
be calculated at any scale: small regions, large regions, and
even non-adjacent areas analyzed together (Jolly & Chang,
2021). Including too many areas that are not involved in pro-
cessing the stimuli at hand will distort the similarity matrices
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Fig. 2. General Approach for Representational Similarity Analysis. An example of a general approach for conducting a representational similarity analysis (RSA). (a)
Voxelwise brain responses for each stimulus are correlated with one another to compute a pairwise neural similarity matrix. (b) Researchers can then generate any number
of theoretically informed or empirically measured similarity models to compete in a regression framework for which best explains the similarity in neural responses.

by including areas that are not contributing to the process-
ing of the mental phenomenon being studied. On the other
hand, narrowing down too much may not accurately capture
how distributed brain regions work together to generate men-
tal representations of more complex mental processes typ-
ically studied by social and personality psychologists. As
such, to properly utilize the advantages of RSA, it is criti-
cal to have a theoretically informed understanding of which
brain regions are likely to be involved in the processes being
studied. Finally, there are a number of statistical issues to
be addressed when using similarity matrices as the basis for
modeling, including non-independent and nested data struc-
tures, collinearity of competing models, and the appropriate
threshold for the significance of a correlation within a matrix.

Despite the challenges that come with using RSA, sev-
eral studies have successfully utilized these methods for gen-
erating novel insights on a variety of phenomena of inter-
est to social and personality psychologists. One study by
Thornton & Mitchell (2017) used RSA to demonstrate that
specific, familiar individuals elicited consistent patterns of
similarity across participants in areas of the brain that have
previously been shown to be important for social cognition.
Moreover, the researchers also found that neural similarity
patterns dovetailed with similarity patterns from theories of
social cognition (e.g., stereotype content model, Big 5 per-
sonality traits). In another study, Stolier & Freeman, (2016)
found that the participants’ biases in the perception of so-
cial categories (i.e., race, gender, and emotional expression)
were reflected in the similarity structure of the fusiform gyrus
and orbitofrontal cortex which are typically involved in basic
processing of visual facial stimuli. Using the model compar-

ison approach, these researchers were also able to show that
their effects held even after accounting for the lower-level
visual similarities between facial stimuli. These results sug-
gest that stereotypes and similar social-conceptual biases in-
fluence perceptual processing at lower levels than previously
identified.

The RSA method has great potential for building a more
comprehensive understanding of how the brain represents so-
cial information based on both robust theoretical and data-
driven models. Yet, reframing hypotheses in terms of the
similarity among conditions requires a pivot away from tra-
ditional modes of hypothesis generation and data analysis.

Biomarker & Neural Signature Analyses.
Among the most robust findings across years of neuroscience
research is the lack of functional specificity of individual
brain regions. In the early days of social neuroscience, re-
searchers looked to find regions that would correspond one
to one with a psychological process – for example, finding
the “fear” region or the “self” region of the brain. Yet, it has
become increasingly clear that most mental processes – es-
pecially the ones that social psychologists are interested in -
depend on activity in numerous brain regions has made it dif-
ficult to identify mental processes associated with particular
brain areas or ascribe multifaceted mental processes to them.
MVPA methods such as the ones described above more re-
alistically reflect that neural representations of certain mental
processes are better captured by broader and more distributed
brain systems than those identified using univariate methods.
Another type of MVPA approach extends the scope of these
distributed neural representations to include the entire brain
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at once. These approaches—referred to as “biomarker” or
neural signature analyses—capitalize on these broadly dis-
tributed activation patterns to generate whole-brain predictive
models of mental state representations, clinical diagnoses, or
individual differences. When executed carefully and vali-
dated appropriately, these models are powerful tools because
they provide quantitative, falsifiable predictions and tend to
generate greater effect sizes and specificity than other meth-
ods (Kragel et al., 2018).

Biomarker-based models leverage the idea that com-
plex behavioral phenotypes will be supported by regions dis-
tributed throughout the brain. Like MVPA classification anal-
yses, whole-brain biomarkers are typically built using a va-
riety of modern machine learning techniques that use voxel-
wise brain activity as the predictors for a behavioral outcome
(Woo et al., 2017). However, unlike typical MVPA classifi-
cation analyses that are cross-validated across runs, whole-
brain biomarker models are trained within a subset of indi-
viduals and generate a predictive model that can be applied
to completely independent groups of participants. This al-
lows biomarker models to be tested across a wider range of
people than the sample on which it was trained. As such,
biomarker studies allow for generalizability across different
participant demographics, different scanners, and even differ-
ent experimental paradigms. An additional benefit is related
to interpretability: once a biomarker or signature is trained,
it is also possible to inspect the model to see what parts of
the brain contribute most strongly to the predictive accuracy
of the model and the direction of their relationships to the
outcome.

Biomarker models can be used to study a wide variety of
psychological phenomena of interest. One early biomarker
study was conducted by Wager et al. (2013) to investigate
the distributed neural representations of physical pain. The
subjective experience of pain to a noxious stimulus is diffi-
cult to assess with self-reports or other physiological indica-
tors (Davis et al., 2020). In this study, Wager et al., (2013)
trained a whole-brain predictive model that was able to accu-
rately predict pain levels in an independent sample of partic-
ipants. Specifically, the researchers used a regression-based
machine learning algorithm based on every voxel in the brain
to identify patterns of fMRI responses that were associated
with levels of heat-induced pain. First, they built the whole-
brain signature by fitting the model to a group of partici-
pants experiencing four levels of pain intensity. They showed
that the signature showed very high sensitivity and specificity
(greater than 94%) in predicting pain intensity level. Next,
they cross-validated these results in an independent sample
of participants and again found highly accurate predictions
of pain intensity. Finally, in two more independent samples
of participants, they further specified the robustness of the
neurological pain signature by showing that it was specific to
the increases in experiences of pain intensity and not the an-
ticipation of pain, the recall of previous pain, or other mental
states that are known to activate similar brain networks (e.g.,
social rejection). This study demonstrates the utility of using
a neural signature approach but also underscores the impor-

tance of generalizing the findings across independent partici-
pants and validating the measure against similar constructs.

Another study illustrates how the biomarker approach
can be useful to social and personality psychology. Many
studies in social psychology use static emotionally valenced
images to elicit the perception of negative affect in partici-
pants. However, researchers typically rely on self-report to
assess the emotional intensity of the images. It would be use-
ful to develop an alternative method that less intrusively or
implicitly assesses the level of emotional intensity evoked by
a stimulus that generalizes across participants. To this end,
Chang et al., (2015) set out to test a whole-brain biomarker
for predicting what they called a picture-induced negative af-
fect signature (PINES). Using a procedure that mirrored the
approach used in the neurological pain signature from Wa-
ger et al., (2013), Chang et al., (2015) found that the PINES
model was sensitive at predicting the level of negative affect
evoked by a given image. The PINES model was specific to
the perception of images: it did not predict the affective re-
sponses to pain or vice versa. Moreover, a central message of
the study was the observation that these results could not be
reduced to any individual brain structure within the regions
identified in the signature, underscoring the importance of
using a multivariate approach in this case.

Another advantage of using biomarker models is the
ease by which they can be readily shared among researchers,
tested independently, and potentially integrated into a broader
predictive framework. The signatures that are derived from
these procedures produce whole-brain images of statistical
parameters – called voxelwise weight maps – that can be
saved in standard neuroimaging formats and applied to any
data that are aligned to the same coordinate space to produce
a prediction to any set of data based on the signature. This
provides a potentially powerful framework to combine signa-
tures derived from different psychological processes or con-
structs into integrative predictive models at multiple levels of
abstraction (Woo et al., 2017).

Towards the Future
Integrating Multivariate Neuroimaging with other
Methods and Designs.
The MVPA methods described above provide a suite of ap-
proaches and tools that leverage distributed brain activation
patterns to understand how neural systems give rise to com-
plex social and personality processes. Each of these tools is
powerful in its own right and provides new avenues of under-
standing the link between social behavioral and brain mecha-
nisms. MVPA methods need not stand on their own, however,
and can be incorporated within other sets of methods and rich
study designs.

Social network analysis is becoming a popular tool for
quantifying the structure of social relationships within a va-
riety of contexts. In a pioneering study combining social net-
work analysis with MVPA methods, Parkinson et al., (2017)
recruited an entire incoming academic cohort—275 first-year
Masters of Business Administration students—and had them
identify other members within their cohort with whom they
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socialized or knew. This procedure yielded a map of the so-
cial relationship structure of the entire network that could be
used to calculate social network analysis metrics. The au-
thors then recruited a subset from this cohort for an fMRI
scanning session where participants viewed short videos of
their classmates describing themselves to estimate brain re-
sponses to group members. Finally, social network analysis
metrics were converted into dissimilarity values and related
to the similarity of multivariate fMRI responses using RSA.
The researchers found that each of the social network metrics
were spontaneously encoded within these participants but in
different regions of the brain, indicating that people track so-
cial networks in a complex, abstract way that would be diffi-
cult to detect using univariate methods.

Studies of interpersonal perception have benefited from
the rich nature of so-called “round-robin” designs (Kenny &
Albright, 1987). In these designs, every participant is both a
perceiver and social target for every other member of their
group, and participants are asked to make trait judgments
of members of their social groups. This allows researchers
to measure a variety of interpersonal perception character-
istics such as interpersonal consensus, self-other agreement,
and dyadic similarity. These designs can also be used in a
neuroimaging context. Guthrie et al. (2022) ran a round-
robin fMRI study investigating whether the social relation-
ship strength between pairs of individuals could be predicted
by their shared brain responses when thinking of other mem-
bers of their group. To test this, the researchers recruited
twenty groups of six participants each to undergo scanning
while thinking of each other member of their group. Next, the
investigators used multivariate similarity responses to mea-
sure the agreement in brain-to-brain responses between pairs
of individuals when they are thinking of the other people in
their group. They found that similarity in the brain-to-brain
responses within regions previously implicated in mentaliz-
ing and social motivation (e.g., the dorsal medial prefrontal
cortex and anterior insula) consistently predicted social re-
lationship strength between pairs of individuals within each
group. These findings suggest that the more similarly two
people’s brains process socially relevant information about
their group member, the more likely those individuals are to
have strong interpersonal relationships.

The studies above are just a couple of examples of the
ways in which MVPA methods can be integrated with inno-
vative study designs to provide insights and analytic oppor-
tunities that would not otherwise be possible. Though these
kinds of designs can be technically and logistically challeng-
ing to conduct, they provide tremendous opportunities for the
advancement of our understanding of the social brain.

Beyond fMRI.
We focused the discussion in this chapter of MVPA methods
to how they have been used in fMRI. However, multivariate
methods can be applied across any neuroimaging modality
in which there are multiple signals that can be incorporated
together to test hypotheses or compare models.

There are now several papers applying MVPA meth-
ods to the study of social behavior and cognition using elec-

troencephalography (EEG). In one study, Hundrieser et al.,
(2021) used an MVPA classification approach to predict par-
ticipants’ binary yes/no agreement with the moral acceptabil-
ity of various statements (e.g., “wars are acceptable”) based
on spatiotemporal patterns from 61 electrode channels. Cap-
italizing on EEGs superior temporal resolution compared to
fMRI, these researchers were able to determine not only that
the EEG responses could classify the behavioral response but
also identify the epochs in the time series when accurate clas-
sification was possible.

Another promising direction using multivariate EEG
is the development of microstate event-related potentials
(ERPs). ERPs use EEG signals averaged across many tri-
als to estimate the waveform response to a given stimulus.
Microstate ERP analysis is an approach for identifying sta-
ble configurations of global electric brain activity ERP us-
ing information from all of EEG electrodes in a multivariate
framework (Cacioppo et al., 2014). This method has the ad-
vantage over standard ERP approaches of being able to iden-
tify microstates of temporal stability in a data-driven fash-
ion over multiple electrodes to capture reliable effects missed
with standard EEG/ERP approaches. In other words, rather
than treating each millisecond of electrical signal from each
recording electrode separately, this analysis looks for stable
patterns of electrical activity across the electrodes that remain
stable for a period of time. This approach has been used
to successfully capture both the similarities and differences
in brain states short-term vs. long-term romantic intentions
following the viewing of photographs of attractive strangers
(Cacioppo, Bolomont, & Monteleonem, 2017).

Relative to fMRI, there has been less widespread use of
multivariate EEG/ERP methods within social neuroscience.
However, testing hypotheses related to the timing of psycho-
logical processes engaged during social cognition would be
difficult, if not impossible, to test with the slow temporal res-
olution of fMRI. EEG measures are much better suited to
questions about temporal information and applying MVPA
methods to these questions is potentially a very fruitful op-
portunity to make deep insights into these domains.

Although fMRI is the most common MRI modality used
in social neuroscience, there are a variety of other MRI-based
modalities that measure different properties of the brain, for
example structural differences in grey or white matter. Voxel-
Based Morphometry (VMB) methods allow researchers to
examine structural differences in tissue concentration that is
typically used for examining voxel-wise grey matter concen-
trations. Diffusion MRI (dMRI) is a structural neuroimag-
ing technique that measures the anatomical (white matter)
connectivity between regions. The relatively static nature
of dMRI measures make them particularly well suited for
studying stable behavioral characteristics, such as personality
traits. Because the breadth of behaviors and characteristics
underlying many personality dispositions is very broad, it is
likely that these processes cannot be localizable to any single
brain region but rather are distributed across various brain
systems. Variability in the communication between these
systems may explain some of the mechanisms underlying
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individual differences in personality characteristics. Utiliz-
ing biomarker modeling methods, it is possible to build pre-
dictive models of individual differences in personality based
on distributed anatomically connectivity metrics. Chavez et
al. (2022) built a biomarker model of individual differences
in self-esteem based on the results of dMRI from a previ-
ous study. The researchers then applied the predictions from
this model to an independent sample of participants from a
completely new study to generalize these results across time,
scanners, and subject demographics. They found that a mul-
tivariate model of self-esteem outperformed univariate mod-
els within the same predictive modeling framework. More
broadly, similar predictive multivariate dMRI effects can also
be seen in models of the Big Five personality traits that gen-
eralize across samples of participants (Stendel & Chavez, in
press).

Despite the fact that MVPA methods were pioneered
in the context of fMRI data, we anticipate that researchers
will recognize that these methods are built on more general
analytic frameworks and apply them across any number of
contexts where multivariate information is assessed. More-
over, the potential for shared methodological approaches
across levels of analysis—from brain to cognition to behav-
ior—underscores the utility of the multivariate approach in
social neuroscience.

Conclusion
Social neuroscience straddles lines between social and per-
sonality psychology and cognitive neuroscience with the
promise of mutual informativeness. Just as theories and
methods in social psychology have increased in their detail,
nuance, and sophistication, so too has our understanding of
the brain and the methods we use to examine it. Social psy-
chology has long emphasized context and situations as a criti-
cal way of understanding social behavior. Multivariate meth-
ods mirror this at the level of the brain. It is not enough to
just know if a region is involved in a process; it is neces-
sary to know how other regions are active simultaneously to
embed the activity of a given area within its neural context
(McIntosh, 1998).

In this chapter, we have provided an overview of var-
ious approaches to multivariate neuroimaging (i.e., MVPA
methods) for social and personality psychologists. Several
high-quality reviews have also been published that cover in
greater detail each of these methods and how they may be ap-
plied to topics of interest to social psychologists (see: Popal
et al., 2019; Wagner et al., 2019; Weaverdyck et al., 2020).
However, each of the methods covered here are being actively
developed and optimized for best practices. We suspect that
optimal methods for studying one topic (e.g., lower-level per-
ception) may not always transfer to other topics (e.g. higher-
order social cognition). However, this underscores the neces-
sity for social and personality psychologists to be involved
with these efforts from the outset. The fundamental mech-
anism of our social behavior lies in the three-pound organ
encased within the skull. However, the details of how this
system gives rise to all the complex social and personality

processes in which we are interested remains a complex chal-
lenge and entangled mystery (Chavez, 2021). Multivariate
neuroimaging methods provide a powerful path forward and
will likely become the dominant approach to understanding
the brain basis of social cognition and behavior for years to
come.
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