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Abstract
Inhibitory control (IC) is a critical neurocognitive skill for successfully navigating challenges across domains. Several studies
have attempted to use training to improve neurocognitive skills such as IC, but few have found that training generalizes to
performance on non-trained tasks. We used functional magnetic resonance imaging (fMRI) to investigate the effect of IC
training on a related but untrained emotion regulation (ER) task with the goal of clarifying how training alters brain function
and why its effects typically do not transfer across tasks. We suggest hypotheses for training-related changes in activation
relevant to transfer effects: the strength model and several plausible alternatives (shifting priorities, stimulus-response
automaticity, scaffolding). Sixty participants completed three weeks of IC training and underwent fMRI scanning before and
after. The training produced pre- to post-training changes in neural activation during the ER task in the absence of behav-
ioral changes. Specifically, individuals in the training group demonstrated reduced activation during ER in the left inferior
frontal gyrus and supramarginal gyrus, key regions in the IC neural network. This result is less consistent with the strength
model and more consistent with a motivational account. Implications for future work aiming to further pinpoint mechan-
isms of training transfer are discussed.
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Introduction
Inhibitory control (IC) is a critical neurocognitive skill for navi-
gating cognitive, social and emotional challenges, and deficits
in IC are a hallmark of some psychopathology (e.g. substance
abuse; Perry and Carroll, 2008). IC is considered a basic element
of the broader construct of self-control, which predicts positive
outcomes such as academic achievement, relationship success
(Tangney et al. , 2004; Duckworth, 2011), and substance use ces-
sation (Berkman et al., 2011; Mahmood et al., 2012). As such,
training IC is a promising intervention strategy. A critical open
question in the emerging IC training literature is whether and
how targeted IC training may transfer to conceptually related
but untrained tasks.

Cognitive training studies to date have focused primarily on
working memory (WM) and have shown mixed evidence for
WM improvement through training (for review see Shipstead
et al. , 2012). Though some of these studies have provided evi-
dence of training transfer (Jaeggi et al., 2011), many have not (for
review, see Melby-Lervåg and Hulme, 2013). A recent study by
Schweizer et al. (2013) showed some evidence of transfer from
emotional WM training to both improved performance on and
functional brain activation during an untrained ER task, sug-
gesting a shared emotional component as a potential transfer
mechanism. Even fewer studies have focused on IC training.
Though IC performance appears to improve with training
(Berkman et al., 2014), evidence for training transfer has not yet
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been found (Thorell et al., 2009; Enge et al., 2014). A recent meta-
analysis of self-control training effects found them to be very
small if they exist at all (Berkman, in press). Additionally, a
well-powered recent study determined that playing video
games, an activity that involves IC for certain types of games
that were included in the analysis, did not improve perform-
ance on cognitive tasks (Unsworth et al., 2015).

In light of these results, the field now needs a model of how
IC training might transfer to untrained tasks. The overarching
goal of the current paper is to provide a mechanistic framework
that explains how IC training operates and, in so doing, ac-
counts for the absence of transfer effects and suggests ways to
improve them.

IC as a component of self-control

Inhibitory control (IC) is a key building block in the broader con-
struct of self-control, or the ability to direct behavior away from
short-term responses that conflict with long-term goals. This
conceptualization of IC is consistent with the strength (or re-
source) model wherein self-control is a shared, limited resource
that contributes to functioning across several response domains
(Muraven and Baumeister, 2000). Though IC most closely maps
on to the behavioral domain, it is nonetheless expected to be
central to performance in other domains. For example, the abil-
ities to inhibit motor and emotional responses are presumably
related because they draw upon a shared overarching capacity
for self-control. By the same logic, a training intervention that
improves performance in one domain of self-control should im-
prove performance in other domains.

The neural systems of IC

The neural systems activated during IC are fairly well character-
ized (Swick et al., 2011; Wiecki & Frank, 2013). Successful IC typ-
ically engages the bilateral ventrolateral prefrontal cortex
[VLPFC; primarily right inferior frontal gyrus (rIFG), but also the
left], pre-supplementary motor area (preSMA), anterior cingu-
late cortex (ACC; Garavan et al, 2002) and the subthalamic nu-
cleus (STN; Aron and Poldrack, 2006). Within this IC neural
network, rIFG plays a critical role. Lesion work in both humans
(Aron et al., 2003) and non-human primates (Iversen and
Mishkin, 1970) suggests that an intact rIFG is necessary for suc-
cessful IC execution.

Neural overlap of IC and ER

Evidence from structural and functional neuroimaging supports
the conceptualization of a unified self-control construct, with
rIFG as a key component (Cohen and Lieberman, 2010).
Individuals with rIFG lesions show impairments in both IC [i.e.
as indexed by the Stop Signal Task (SST); Aron et al., 2003] and
ER abilities (i.e. as indexed by increased risk for affective psy-
chopathology; Grafman et al., 1986). Additionally, integrity of
the right pars opercularis (a region within the rIFG) is associated
with performance on both IC and ER tasks such that individuals
with reduced gray matter intensity in this region perform worse
on both tasks (Tabibnia et al., 2011). Functional activation stud-
ies have consistently demonstrated rIFG activation during ER
(Ochsner et al., 2002; Wager et al. , 2008; Payer et al., 2012), and
those in which the same individuals complete separate ER and
IC tasks show rIFG activation across both (Tabibnia et al., 2011;
Tabibnia et al., 2014).

IC training

As a fundamental neurocognitive skill with a well-characterized
neural network that is predictive of important outcomes and
theoretically linked to other domains of self-control, IC is a
highly promising target for intervention (Berkman et al., 2012).
Though IC appears to be trainable using an adaptive, standar-
dized IC task (Berkman et al., 2014; but see also Enge et al., 2014),
transfer effects of IC training have been elusive.

The few studies that have attempted to train IC have pro-
duced mixed results (Thorell et al., 2009; Enge et al., 2014;
Berkman et al., 2014; for review, Spierer et al., 2013). A recent
study using both Go/No-Go and Stop Signal Task (SST) training
paradigms did not find behavioral evidence for training effects
nor transfer to measures of fluid intelligence (Enge et al., 2014).
Notably, this study did not include any neural measures, pre-
cluding investigation of neural effects in the absence of behav-
ioral differences. Another recent study from our lab
demonstrated that a brief 3-week training on the SST does lead
to improvement in IC that in turn related to differences in acti-
vation in the IC network (Berkman et al., 2014). Specifically, the
group that received the IC training showed an increase in acti-
vation in the rIFG from pre- to post-training during the cue
phase of the task (i.e. before the use of IC), while the group that
completed an active control task showed the opposite pattern.
The fact that behavioral improvement on the SST was associ-
ated with activation changes in rIFG suggests that training with
the SST successfully targeted the IC neural network.

Theoretical mechanisms of IC training transfer effects

Assuming that an IC training paradigm can successfully train
IC, can this training transfer to an untrained ER task? Given the
evidence that IC and ER share a common neural substrate alter-
able by IC training, IC training may transfer to ER by affecting
this shared network.

The strength model makes distinct predictions about the be-
havioral and neural changes that might accompany training,
thereby allowing for the identification of testable mechanisms
by which transfer may or may not occur. The strength model
proposes a strengthening (akin to the effect of strength training
on muscles) of the common self-control resource through train-
ing. By practicing IC repeatedly, one is building the self-control
‘muscle,’ presumably making it larger and more robust. This
strengthening is predicted to be task-general; any task requiring
the self-control ‘muscle’ should benefit from its training.

The logic of most training studies follows the predictions of
the strength model, either explicitly or implicitly: practice
causes improvement by growing a shared resource. This popu-
larity is likely attributable to the model’s clear predictions re-
garding training effects and its strong foundation in the
literature. However, there exist other plausible mechanisms for
how training and transfer might work (Table 1). One such alter-
native is a motivational account of self-control, which has been
described as a revision to the strength model. This motivational
account, termed the ‘shifting priorities’ model, posits that a
physiological resource is not necessary to explain the mechan-
isms of self-control. Instead, self-control failure is caused by a
motivational/attentional switch from prioritizing ‘have-to’ tasks
to prioritizing ‘want-to’ tasks (Inzlicht et al., 2014). In this model,
training would somehow increase motivation to work on an
otherwise difficult, ‘have-to’ task, but it is unclear what the
mechanism would be. Nonetheless, if motivation were
increased—effectively transforming the ‘have-to’ task into a
’want-to’ task—then the pattern of neural activity during the
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training task might be characterized by task engagement (e.g.
reduced default network activity; Anticevic et al., 2012).

Another plausible mechanism is that training might gener-
ate stimulus-response associations that, through automaticity,
reduce the effortful cognitive burden of IC detection and imple-
mentation (Lenartowicz et al., 2011). In this case, we expect a
pattern of improved behavioral performance in tandem with
reduced activity in regions associated with effortful processing.
Additionally, if training operates through stimulus-response
pairing, then training effects are likely to be stimulus-specific;
training-related gains in performance will not generalize to
novel tasks that do not have the same stimuli and contingency
structure as the training tasks.

A third alternative is that training causes a qualitative
change in mental processing (i.e. use of different strategies).
This prediction is related to the Scaffolding Theory of Aging and
Cognition—revised, which posits that cognitive training in older
adults may improve functioning by increasing neural activity in
compensatory regions, rather than those underlying the trained
cognitive skill per se (Reuter-Lorenz and Park, 2014). Though
this theory was developed with older adult populations, the
concept of scaffolding and its application to training is relevant
across the lifespan. Specifically, scaffolding predicts that behav-
ior change would be accompanied by neural activation in re-
gions not otherwise recruited by the task.

The current study

The goal of this study is to investigate whether IC training
transfers from a non-affective training task to an untrained af-
fective task and to use neuroimaging to characterize the mech-
anism of transfer (or non-transfer). In a previous report
(Berkman et al., 2014), we characterized the effect of a 3-week IC
training program on functional neural activation during IC.
However, as noted above, no study has yet demonstrated trans-
fer of IC training effects to related yet untrained domains. Here,
we report new analyses from the same dataset regarding the ef-
fects of the IC training on neural activation during ER.

Given previous mixed evidence of behavioral transfer ef-
fects, we do not have strong predictions about the improvement
of behavioral ER capacity with IC training. However, we do pre-
dict changes in IC neural networks during the ER task as a result
of IC training, specifically in the rIFG and possibly other regions
that will provide evidence for or against the plausible mechan-
isms of training transfer described above.

We posit a set of competing hypotheses for patterns of brain
activation with respect to models of training transfer outlined
above. One possibility is that we will find evidence for an in-
crease in activation in the IC neural network (specifically rIFG)
consistent with strengthening of the self-control ‘muscle’
through training (i.e. increases in rIFG activation in training
compared to sham). However, there are several alternative pos-
sibilities, whereby training will lead to a different pattern of
neural results more consistent with one of the alternative mod-
els listed in Table 1.

Materials and methods
Participants

Sixty participants (33 females, 27 males) aged 18–30 years
(M¼ 21.63, s.d.¼ 2.99) were recruited through flyers posted
around the University of Oregon (UO). The ethnic makeup of
this group of participants was representative of the local

community: 84% Caucasian, 4% Asian or Pacific Islander, 7%
Hispanic and 5% other. Interested participants were screened by
phone for eligibility (i.e. right-handedness, absence of neuro-
logical and mood disorders, absence of MRI contraindications).
Eligible participants were scheduled for a baseline fMRI session
at the UO’s Lewis Center for Neuroimaging (LCNI). At the begin-
ning of this session, all participants provided informed consent
in accordance with a protocol approved by the UO institutional
review board.

Procedure

Baseline, training and endpoint sessions occurred over the
course of approximately 23 days for each participant. At base-
line, participants underwent fMRI scanning at the LCNI during
which they completed two runs of the SST (Verbruggen and
Logan, 2008) followed by two runs of a cognitive reappraisal ER
task (Gross, 1998). Participants also completed questionnaire
measures following the scan that were unrelated to this study.
At the end of the baseline session, participants were randomly
assigned to either a training group or a sham-training group.
Approximately 1–2 days (M¼ 1.58 days, s.d.¼ 0.72) following the
baseline session, the training component began, consisting of
10 sessions of either the SST (training group) or a two-
alternative forced-choice reaction time task (i.e. the SST without
stop cues; sham group). Training sessions occurred approxi-
mately every other day for 3 weeks (M¼ 18.98 days, s.d.¼ 1.94)
and were conducted in behavioral testing rooms in the Social
and Affective Neuroscience (SAN) Laboratory in the Department
of Psychology. All participants completed all 10 training ses-
sions. For the endpoint session, participants returned to the
LCNI approximately 1–2 days following their last training ses-
sion for an fMRI scanning session identical to the baseline ses-
sion except that the images used in the ER task were novel.

Tasks

Stop Signal. Each trial of the SST was comprised of a cue indicat-
ing the start of a trial (500 ms), then a go signal (1000 ms) con-
sisting of an arrow pointing either left or right (with a ratio of
1:1), followed by an inter-trial interval of variable duration
(M¼ 1400 ms; jittered following a gamma distribution).
Participants were instructed to press the corresponding arrow
key in response to the go signal. On a minority of trials (25%), an
auditory stop signal played after the go signal at a variable latency
called the stop-signal delay (SSD). On these trials, participants
were instructed to inhibit their button press. The SSD was dynam-
ically adjusted by 50 ms after each stop trial using a staircase func-
tion (i.e. increased following successful stops, decreased following
failed stops). A rate of 50% response accuracy was achieved on
stop trials through the alternating control of two independent

Table 1. Plausible mechanisms of training transfer

IC network
activation

Other activation

Strength model Increase No change
Shifting priorities model Decrease Decrease in default

mode network
Stimulus-response

automaticity
Decrease No change

Scaffolding No change Increase in
compensatory regions

K. G. Beauchamp et al. | 3

 at U
niversity of W

ashington on June 3, 2016
http://scan.oxfordjournals.org/

D
ow

nloaded from
 

http://scan.oxfordjournals.org/


staircases over the SSD in blocks of eight trials. The difference be-
tween the speed of the stop process and the SSD is used to calcu-
late the stop-signal response time (SSRT), the primary dependent
measure of the SST. The integration method, which is less biased
than the alternative mean method (Verbruggen et al., 2013), was
used to estimate the speed of the stop process. The SSRT was
computed separately for each of the two runs of the SST and then
averaged across the two runs for each time point (baseline, end-
point). Each run of the SST consisted of 128 trials (32 stop trials)
and averaged 6:06 min in duration.

Emotion regulation. The cognitive reappraisal task used in this
study was an adaptation of a task commonly used to assess ER
(Gross, 1998). Each run of the task consisted of six blocks of five
trials each. At the beginning of each block, participants were
given one of three instructions (3000 ms): ‘look and let yourself
respond naturally’ (Look), ‘decrease emotion’ (Reappraise) or
‘scene description’ (Label). The analyses reported here focus on
the Look and Reappraise conditions because the neural regions
supporting reappraisal are better understood (Ochsner et al.,
2012). The instruction screen was followed by a neutral or nega-
tive International Affective Picture System (IAPS) picture
(5000 ms), a blank screen (500 ms) and a prompt for participants
to rate their distress on a Likert scale of 0–9 (4500 ms). Each trial
was separated by an inter-trial interval of variable duration (M
ITI 1.85s). Each run of the ER task consisted of 30 trials and
lasted 6:12 min.

Training sessions

During each training session, the training group completed one
run of the SST that was modified as follows. First, the SSD from
the previous session was used at the beginning of the subse-
quent training session to allow for continuous adaptation of dif-
ficulty level to maintain 50% accuracy across training sessions.
Additionally, a strategy involving the cue at the start of each
trial was employed to discourage participants from slowing
their response to prepare for stop trials and instead encourage
responding to go trials as quickly as possible. This strategy
involved the start cue changing color (from white) based on the
response time on the previous trial (to orange if previous re-
sponse time>500 ms, to red if previous response time>750 ms).
This procedure has been shown to decrease the bias and in-
crease the efficiency of SSRT estimation (Verbruggen et al.,
2013). The sham group completed one run of the same task
without sound.

Behavioral data analysis

Behavioral measures of interest included ER scores calculated
from the ER task distress ratings (i.e. the average distress rating
on Look trials minus that on Reappraise trials averaged across
both runs; greater scores indicated more effective ER), and
SSRTs estimated from the SST training sessions. We investi-
gated the presence of behavioral training transfer from IC to ER
scores by testing the group (sham vs training)" time (baseline
vs endpoint) interaction. Within the training group, the slope of
SSRTs across training sessions was calculated as a behavioral
change measure to be incorporated into neuroimaging analyses.
Outliers (n¼ 2) greater than 3s.d.’s above or below the mean
were winsorized.

Imaging data acquisition

Neuroimaging data were acquired using a 3.0 T Siemens Allegra
head-only scanner at the UO’s LCNI. Data acquisition and

preprocessing parameters were identical to those used by
Berkman et al. (2014).

Statistical analyses were implemented in SPM8. For each
subject, event-related condition effects were estimated accord-
ing to the general linear model using a canonical hemodynamic
response function, high-pass filtering (128 s) and a first-order
autoregressive error structure. At the subject level, BOLD signal
was modeled in a fixed effects analysis with regressors for
negative and neutral Look trials, negative and neutral
Reappraise trials, negative and neutral Label trials, and the in-
struction, cue and response periods totaling nine substantive
regressors per run. Linear contrasts were created for each com-
parison of interest: Reappraise negative> Look negative at base-
line vs. endpoint; Reappraise negative (> implicit baseline) at
baseline vs endpoint; Reappraise negative (> implicit baseline)
at baseline; and Reappraise negative (> implicit baseline) at
endpoint. We included contrasts using the low-level baseline
condition in order to reduce the number of factors present in
our models and to minimize Type II error rates given that our
analyses were not confirmatory in nature. These contrasts were
then imported to group-level random effects analyses for infer-
ence to the population. Paired and independent samples t-tests
were used to interrogate simple effects.

Neural IC training transfer effects to the ER task were meas-
ured in two ways: a group (sham vs training)" time (baseline vs
endpoint) interaction and within training group analyses (corre-
lated change from baseline to endpoint) incorporating behav-
ioral change indices (i.e. IC training slope) as regressors. The
logic of this latter analysis was to explore the extent to which
training-related changes in neural activity during ER within the
training group may relate to the quality of training. A combined
voxel-height (P¼ 0.005) and cluster-extent (k¼ 67 for group-
" time interaction analyses; k¼ 53 for correlated change ana-
lyses) correction was applied for all analyses using Analysis of
Functional Neuroimages AlphaSim software (Cox, 1996).

Results
Behavioral results: ER success

To verify that the ER task had the intended effects, paired sam-
ples t-tests were used to compare average distress ratings on
Look trials to those on Reappraise trials. Participants had higher
distress ratings on Look trials compared to Reappraise trials at
both baseline, t(59)¼ 14.82, P< 0.001, and endpoint, t(59)¼ 15.04,
P< 0.001, suggesting that participants reappraised successfully
(Figure 1).

Behavioral results: training-induced change in ER
performance

The extent to which training in IC transferred to ER perform-
ance was examined by testing the group" time interaction for
ER scores from baseline to endpoint. The group" time inter-
action was not significant, indicating no difference in the ER
score change from baseline to endpoint between the training
and sham groups, F(1,58)¼ 0.16, ns (Figure 2). In other words,
there was no behavioral training transfer from IC to ER.

Neuroimaging results: change in ER task-related neural
activity as a function of training

Group" time interaction. To determine the extent to which neural
activity during the ER task changed as a function of IC training,
whole-brain analyses were conducted using the standard
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Reappraise> Look contrast. No regions demonstrated a signifi-
cant group" time interaction for the Reappraise> Look con-
trast. When the group" time interaction was investigated
during the Reappraise period (>implicit baseline), four signifi-
cant clusters emerged (Table 2), including one in the left IFG
(#45, 21, 18; Figure 3), a part of the IC network, and one in the
supramarginal gyrus (36, #60, 39), in which the sham group
showed a greater increase in these regions from baseline to
endpoint than did the training group. Parameter estimates were
extracted to interrogate the group" time interaction further
Figure 4. Simple effects tests revealed that in three of the four
regions, the interaction was driven by both a significant in-
crease in activation over time in the sham group [left occipital,
t(29)¼#2.768, P¼ 0.01; supramarginal gyrus, t(29)¼#2.89,
P¼ 0.007; right occipital, t(29)¼#2.67, P¼ 0.012] and also a sig-
nificant decrease in activation over time in the training group
[left occipital, t(29)¼ 3.187, P¼ 0.003; supramarginal gyrus,
t(29)¼ 2.74, P¼ 0.011; right occipital, t(29)¼ 3.27, P¼ 0.003]
(Figure 4). In the left IFG, activation significantly decreased from
baseline to endpoint in the training group, t(29)¼ 4.85, P< 0.001,
but not in the sham group, t(29)¼#1.29, ns. Simple effects tests

also revealed significantly higher activation at baseline in the
training group compared to the sham group in the supramargi-
nal gyrus, t(58)¼#2.475, P¼ 0.016, and significantly lower acti-
vation in the training group at endpoint compared to the sham
group in all clusters [left occipital, t(58)¼ 2.81, P¼ 0.026; left IFG,
t(58)¼ 3.24, P¼ 0.002; supramarginal gyrus, t(58)¼ 3.24, P¼ 0.002;
right occipital, t(58)¼ 3.03, P¼ 0.004].

Neuroimaging results: activations correlated with IC
improvement in training group across time

We used a ‘correlated change’ model to estimate the degree of
association between improvements in IC performance over
time (training slope) and changes in activation during ER (>im-
plicit baseline) from baseline to endpoint. Positive correlated
change reflected regions where changes in activation during ER
from pre- to post-training were linearly related to changes in
behavioral improvement in IC, independent of their pre- or
post-training level. This analysis revealed a significant associ-
ation between change in activation from baseline to endpoint in
the medial prefrontal cortex (mPFC, a component of the default
mode network) and training slope such that a more negative
training slope (i.e. better IC performance over time) was associ-
ated with decreased activation in this area across time (Figure 5;
middle). Simple effects demonstrated that greater deactivation
from baseline to endpoint in this region was associated with a
more negative training slope (Figure 5, right). Coordinates of all
clusters significantly correlated with training slope are pre-
sented in Table 3.

To further clarify the correlated change result in the mPFC,
we examined the relationship of activation in mPFC with activa-
tion in the previously identified left IFG cluster. These param-
eter estimates were significantly correlated such that decreases
in mPFC activation over time were associated with decreases in
left IFG activation in the training group [r(28)¼ 0.479, P< 0.01].
We discuss possible interpretations of this relationship in light
of the outlined plausible mechanisms of training transfer
below.

Discussion
This study aimed to examine whether IC training leads to
changes in an untrained ER task. Transfer of behavioral im-
provement to untrained tasks has been elusive in cognitive
training studies. A more refined understanding of how training
alters specific neurocognitive systems may explain the lack of
transfer across presumably related domains. Here, we investi-
gated the effects of a training paradigm known to engage the IC
neural network on functional activation during an ER task. Our
analyses replicated the previously observed lack of behavioral
transfer and provided some potentially diagnostic insights
based on patterns of change in brain activation. Specifically, our
results indicate that IC training may lead to increased task en-
gagement and decreased default mode network activity (e.g.
mPFC) during ER, which is most consistent with a motivational
account of self-control among the possibilities we considered.

The training and sham groups demonstrated comparable
performance on the ER task both at baseline and endpoint, indi-
cating no behavioral effect of IC training on ER performance.
This result is inconsistent with the strength model, which pre-
dicts that self-control training in any domain should lead to
domain-general improvements. Berkman et al. (2014) found evi-
dence that IC training effects in the task deployed here were
critically tied to the cue used in training, consistent with
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Fig. 1. Average distress ratings following Look and Reappraise conditions across
time. Across groups, distress ratings for Reappraise trials were significantly less
than those on Look trials at both baseline and endpoint, indicating successful
ER.
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Fig. 2. Average ER score for training (TRN) and sham groups across time. The dif-
ference between baseline (T1) and endpoint (T2) ER scores was not significantly
different between groups.
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implicit learning models that suggest performance improve-
ments become specific to sets of cues that are paired with train-
ing trials (Lenartowicz et al., 2011). In this case, the fact that our
participants saw different cues in trained and untrained tasks
could account for a lack of behavioral transfer effects.

Despite the lack of behavioral effects, brain activation differ-
ences during the ER task did emerge as a result of IC training. A
significant decrease in activation in the training group (vs sham
group) was found in several regions including the left IFG and
supramarginal gyrus, both regions associated with training on

Fig. 3. Group" time interaction in the left IFG. The left IFG showed greater activation during Reappraise trials (>implicit baseline) from baseline to endpoint in the
sham group compared to the training group. Corrected using AlphaSim; voxelwise threshold of P¼0.005, k>67.

Fig. 4. Parameter estimates for significant clusters in the group" time interaction for the contrast Reappraise> implicit baseline; *P<0.05, **P< 0.01, ***P< 0.001.

Table 2. Reappraise> implicit baseline; group–time interaction

Anatomical region x y z k t z

T2 > T1 for Training > Sham – – – – – – –
T2 > T1 for Sham > Training L occipital #39 #84 15 105 3.49 3.31

lIFG #45 21 18 236 4.44 4.10
Supramarginal gyrus 36 #60 39 155 4.21 3.92
R occipital 42 #63 #6 75 4.06 3.79

Corrected using AlphaSim; voxelwise threshold of P¼0.005, k>67.

6 | Social Cognitive and Affective Neuroscience, 2016, Vol. 0, No. 0

 at U
niversity of W

ashington on June 3, 2016
http://scan.oxfordjournals.org/

D
ow

nloaded from
 

http://scan.oxfordjournals.org/


the SST in previous work (Berkman et al., 2014). Interestingly,
the training group demonstrated a pattern of reduced activation
in these regions during ER from baseline to endpoint, the oppos-
ite pattern of activation change observed by Berkman et al.
(2014) in the training group during the cue phase of the SST (i.e.
before IC). It is possible that this pattern of reduced activation
represents an increase in the strength of stimulus-response as-
sociations related to regulating emotion such that those partici-
pants who trained on IC achieved similar behavioral ER to those
who did not due to a reduction in the cognitive burden associ-
ated with ER through automaticity. An increase in neurocogni-
tive efficiency could also explain these results; however, this
explanation is speculative as additional data (i.e. information
about connectivity between local and global neural networks)
are needed to empirically determine the extent to which neural
efficiency may differ between training and sham groups
(Poldrack, 2014).

Analyses within the training group suggest that IC training
might transfer through a motivational mechanism. The mPFC, a
component of the default mode network, demonstrated marked
decreases in activation during ER that were associated with in-
creases in IC performance across training. This increase in de-
activation in mPFC is typically associated with an increase in
task engagement (Gusnard et al., 2001; Raichle et al., 2001). Thus,
IC training may have affected neural activation during ER

through decreases in default mode network activity that enabled
increased engagement in the self-control task at hand.
Intriguingly, parameter estimates of this mPFC activation were
highly correlated with those of activation in the left IFG obtained
from the group" time interaction model, suggesting that reduc-
tions in default mode network activity might contribute to more
efficient processing in the IC network. This pattern of brain acti-
vation could be interpreted as evidence for both a motivational
account as well as scaffolding in which activity in one network
may account for changes in another network. This interpretation
highlights the important point that the proposed mechanisms
are not necessarily in opposition or mutually exclusive.

A key limitation of the current study is that the design of the
ER task was not optimized to investigate other potential mech-
anisms of training transfer beyond the strength model. Based
on the findings of Berkman et al. (2014), an ER task sharing a cue
with the trained IC task would be most likely to demonstrate
training transfer effects through a reactive to proactive shift in
control (Braver, 2012). Future studies can test for training trans-
fer effects by incorporating shared cues across trained and non-
trained tasks and explicitly designing non-trained tasks to allow
for interrogation of the cue phase of the trial (Denny et al., 2014).
Additionally, the use of a motivationally salient cue (e.g. a
desired consumable) may increase the effectiveness of the IC
training through the proposed motivational mechanism.
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Fig. 5. Correlation with IC improvement in the mPFC in the training group across time (i.e. activation in Reappraise> implicit baseline contrast from T1 to T2 positively
correlated with training slope; brain images, middle). Activation in the mPFC during Reappraise trials at endpoint (T2) compared to baseline (T1) was positively corre-
lated with training slope [scatter plot, left; decreased mPFC activation associated with more negative training slope (better IC)]. Parameter estimates from the simple ef-
fects at each timepoint (right) demonstrated an increase in deactivation in the mPFC from baseline to endpoint during Reappraise trials. Corrected using AlphaSim;
voxelwise threshold of P¼0.005, k>53.

Table 3. Reappraise> implicit baseline; correlations with IC improvement (i.e. slope of SSRTs across training sessions) in training group across
time

Anatomical region x y z k t z

Pos. correlated with IC improvement cingulate #12 0 42 57 3.72 3.33
SMA #21 #30 57 84 3.87 3.44
dmPFC 15 45 36 67 4.09 3.59
mPFC 9 45 9 228 4.77 4.05

Neg. correlated with IC improvement – – – – – – –

Corrected using AlphaSim; voxelwise threshold of P¼0.005, k>53.
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The absence of behavioral differences in the untrained task
following training in the presence of brain activation differences
is notable. It is possible that a larger dose (e.g. more frequent or
longer sessions) would have facilitated behavioral training
transfer. Additionally, a larger overall sample size would in-
crease detection rates. However, a more refined approach for fu-
ture neuroimaging studies would be to increase the sampling
precision (e.g. by selecting individuals with IC deficits).
Moderating factors, including IC ability at baseline, may account
for the dissociation between behavioral and neural training
transfer effects. Neural activation may also be a precursor to be-
havioral change. Future studies can incorporate these perspec-
tives to inform theories of training and transfer effects.

Another limitation lies in the significant difference in the
supramarginal gyrus activations during reappraisal at baseline
between the training and sham groups. Though this pre-
existing activation difference makes interpretation of training
transfer effects more challenging, the use of random assign-
ment to condition, lack of behavioral differences at baseline and
analyses that incorporate change over time serve to strengthen
the current results.

In sum, IC training may generalize to an untrained ER task
initially at the level of the brain and perhaps eventually in be-
havioral performance. Our results provide some evidence for
increased automaticity in processing in the left IFG, a key com-
ponent of the IC network, during ER following training, a pattern
of results inconsistent with the strength model that proposes
an increase in a common self-control ‘muscle’ with training.
Overall, our results support the existence of neural training
transfer effects related to increases in automaticity in key IC
neural network regions as well as decreases in default mode
network activity associated with increased task engagement,
pinpointing likely mechanisms of training transfer for future
investigations.
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