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Ridding oneself of an unwanted habit or tendency is a war that 
consists of a series of momentary self-control skirmishes. A 
longtime smoker may decide to quit, but success in reaching 
that goal will depend on the individual outcomes of a series of 
battles with cigarette cravings. Understanding the neural pro-
cesses involved in these brief repeated struggles, in smoking 
and in other domains, is essential to understanding how self-
control works in the trenches of real-world goal pursuit. The 
investigation reported here focused on response inhibition as 
one key factor that influences the ultimate success or failure of 
goal pursuit, and overcoming addiction in particular. Behav-
ioral studies have examined how response inhibition during 
lab-based tasks relates to general real-world success at over-
riding an unwanted habitual behavior in favor of a desired 
novel one (Wood & Neal, 2007). Similarly, cognitive neuro-
science studies have examined the neural correlates of response 
inhibition in the lab. However, because of limitations inherent 
to these two methods, no study has identified the neural sys-
tems that support effective response inhibition during the brief 
and repeated self-control episodes in daily life that are integral 
to successful long-term goal pursuit. In the current study,  
we investigated this question using a novel integration of 

methods, combining within-scanner measures of response 
inhibition with assessment of daily, momentary self-control 
along the way to a larger habit-changing goal.

Behavioral performance on simple laboratory response-
inhibition tasks (e.g., go/no-go) has been consistently linked to 
success in reaching a variety of real-world goals that involve 
self-regulation. For instance, the capacity to engage response 
inhibition has been linked to success at dieting (Rothman, 
Sheeran, & Wood, 2009), increased exercise (Achtziger,  
Gollwitzer, & Sheeran, 2008), and improved academic com-
petency (Oaten & Cheng, 2006). Conversely, diminished 
response-inhibition capacity has been linked to alcoholism 
(Nigg et al., 2006), methamphetamine abuse (Monterosso, 
Aron, Cordova, Xu, & London, 2005), and even domestic vio-
lence (Finkel, DeWall, Slotter, Oaten, & Foshee, 2009). These 
studies have demonstrated a robust association between 
behavioral performance on simple behavioral tasks assessing 
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Abstract

Successful goal pursuit involves repeatedly engaging self-control against temptations or distractions that arise along the way. 
Laboratory studies have identified the brain systems recruited during isolated instances of self-control, and ecological studies 
have linked self-control capacity to goal outcomes. However, no study has identified the neural systems of everyday self-control 
during long-term goal pursuit. The present study integrated neuroimaging and experience-sampling methods to investigate the 
brain systems of successful self-control among smokers attempting to quit. A sample of 27 cigarette smokers completed a go/
no-go task during functional magnetic resonance imaging before they attempted to quit smoking and then reported everyday 
self-control using experience sampling eight times daily for 3 weeks while they attempted to quit. Increased activation in right 
inferior frontal gyrus, pre-supplementary motor area, and basal ganglia regions of interest during response inhibition at baseline 
was associated with an attenuated association between cravings and subsequent smoking. These findings support the ecological 
validity of neurocognitive tasks as indices of everyday response inhibition.
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response inhibition and important real-world outcomes, but 
have not focused specifically on the brief and repeated 
instances of self-control that occur as part of goal pursuit and 
collectively contribute to long-term success.

Neuroscience studies have converged in identifying a consis-
tent network of brain regions that are active during brief,  
laboratory-based manipulations of response inhibition. A num-
ber of functional neuroimaging (Aron, Robbins, & Poldrack, 
2004; Leung & Cai, 2007) and lesion (Aron, Fletcher, Bull-
more, Sahakian, & Robbins, 2003; Chambers et al., 2006) stud-
ies have implicated the right inferior frontal gyrus (rIFG) as the 
primary brain region for response inhibition. Many studies have 
also found that the dorsal anterior cingulate cortex (dACC), the 
anterior insula, the pre-supplementary motor area (pre-SMA), 
and subcortical regions such as the basal ganglia are coactive 
with the rIFG during response inhibition (Aron et al., 2007; 
Wager et al., 2005). Though the precise role of each of these 
regions in the human response-inhibition network is unclear, 
recent studies have suggested that the pre-SMA and dACC  
are involved in detection of potential conflict between the pre-
potent and desired response (Botvinick, Cohen, & Carter, 2004; 
Mostofsky & Simmonds, 2008; Nachev, Wydell, O’Neill, 
Husain, & Kennard, 2007), the rIFG plays a role in representing 
the mapping between the inhibition cue and stopping (Van Gaal, 
Ridderinkhof, Scholte, & Lamme, 2010), and the subcortical 
structures are important for directly inhibiting the motor 
response (Aron et al., 2007). These explanations fit well into the 
broader view that the prefrontal cortex executes top-down con-
trol via a neuroanatomical control loop including the basal gan-
glia and primary and supplementary motor areas (Fuster, 2008). 
These studies characterize the brain networks involved in 
response inhibition at a single point in time, but do not capture 
the repeated and motivationally relevant nature of response 
inhibition during real-world goal pursuit.

Thus, on one hand, behavioral measures of response inhibi-
tion have been associated with a broad array of real-world out-
comes, such as prevention of addiction relapse. On the other 
hand, the brain systems recruited for inhibiting responses dur-
ing brief laboratory tasks are being mapped with increasing 
precision. Juxtaposing the behavioral and neuroscience litera-
tures on response inhibition highlights why the neural pro-
cesses underlying real-world instances of response inhibition 
have remained unexplored. There is almost no overlap between 
these literatures beyond similarity in the tasks used to assess 
response inhibition. Consequently, it is unknown whether the 
neural systems involved in laboratory assessments of response 
inhibition are the same ones recruited in the brief and repeated 
everyday battles between habit and self-control. For example, 
it is possible that the neural systems recruited during the stop-
signal task are different from those associated with increasing 
exercise. Linking these disparate levels of analysis (i.e., neural 
and social/behavioral) and time scales (i.e., seconds/minutes 
and days/weeks) requires a paradigm for examining response 
inhibition during real-life situations and also during neuroim-
aging tasks in the same sample of individuals.

Accordingly, we made this link by measuring the neural 
mechanisms and everyday implementation of response inhibi-
tion within a single study. We recruited a sample of individuals 
just before they were to engage in the long-term, real-life 
response-inhibition task of quitting cigarette smoking and 
used functional MRI (fMRI) to examine their neural activation 
during a laboratory response-inhibition task. Next, we used 
experience sampling to track their progress throughout each 
day for the first 3 weeks of their smoking-cessation attempt 
(Fig. 1). Brain data in a priori regions of interest were then 
used to predict successful craving regulation on a daily basis 
during smoking cessation. This approach allowed us to test 
whether, and how, response-inhibition-related neural activa-
tion during the laboratory task related to response inhibition in 
the real world. We hypothesized that activation in the brain 
regions thought to be the most directly involved in inhibiting a 
motor response—the rIFG, pre-SMA, and basal ganglia—
would predict successful regulation of daily craving.

Method
Participants

Thirty-one participants (15 female, 16 male) were recruited 
from smoking-cessation programs in Los Angeles via in-person 
announcements at orientation sessions. All participants were 
heavy smokers (> 10 cigarettes/day, 7 days/week, for at least  
1 year and urinary cotinine > 1,000 ng/mL) enrolled in a profes-
sionally led cessation program (e.g., Freedom From Smoking). 
To be included in the study, participants also were required to 
have a score of 9 or 10 (out of 10) on the Contemplation Ladder, 
a single-item measure of intentions to quit (Biener & Abrams, 
1991), and a cumulative score of at least 18 (out of 20) on the 
Action subscale of the Readiness to Change Questionnaire 
(Rollnick, Heather, Gold, & Hall, 1992), a four-item measure of 
the action stage of change. Participants ranged in age from 28 to 
69 years (M = 46, SD = 9.7) and had smoked for 11 to 53 years 
(M = 28.4, SD = 2.0). The sample was 52% Caucasian, 26% 
Hispanic, 19% African American, and 3% other ethnicities. Par-
ticipants were excluded if they were left-handed, did not speak 
English, consumed more than 10 alcoholic drinks per week, or 
had any of the following conditions: dependence on substances 
other than nicotine at the time of study, dependence on sub-
stances within the previous year, neurological or psychiatric 
disorders, cardiovascular disease, pregnancy, claustrophobia, or 
any other condition contraindicated for MRI.

Of the original 31 participants, all completed the scanning 
session, but 1 withdrew from participation in the experience-
sampling phase, and 3 were excluded for insufficient data; 
thus, 27 participants were included in the analyses reported 
here. Participants were compensated $80 for completing the 
scanning session and an additional $1 for each experience-
sampling response returned, for a possible total of $248. All 
participants provided written informed consent approved by 
the UCLA Institutional Review Board.
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Procedure

Phone screening. Following recruitment, participants were 
contacted by telephone to assess their intentions to quit (with 
the Contemplation Ladder and Readiness to Change Question-
naire) and their targeted quit date (TQD), as well as whether 
they met any of the exclusion criteria. For qualifying partici-
pants, a baseline laboratory session was scheduled at least  
1 day prior to the TQD.

Baseline (scanning) session. Participants came to the UCLA 
Ahmanson-Lovelace Brainmapping Center for a baseline ses-
sion at least 1 day prior to their quit date (Fig. 1). After they 
provided written informed consent, their smoking status was 
confirmed with a urinary cotinine assay (Accutest NicAlert 
strips; JANT Pharmacal Corp., Encino, CA), and baseline 
exhaled carbon monoxide (CO) was measured (Micro-smoker-
lyzer; Bedfont Scientific Ltd., Kent, United Kingdom). Par-
ticipants were screened for amphetamines, cocaine, marijuana, 
opiates, and PCP via urine test (Syva RapidTest d.a.u. 5; Dade 
Behring Inc., Cupertino, CA).

We used a go/no-go task to examine the neural activation 
associated with response inhibition (Fig. 2). The task consisted 
of 12 blocks containing a series of brief trials, each depicting 
a single letter centered in the screen. Each block began with 
the instruction to “push” or to “pull” the joystick lever. Then, 
depending on which instruction was given, participants pushed 
or pulled the lever whenever the letter L, N, T, or V appeared 
(go trials; ~82% frequency) and withheld a response when the 

letter X appeared (no-go trials; ~18% frequency). A neural 
measure of response inhibition was defined as the difference 
between brain activation during successful no-go trials (over-
riding the prepotent “go” response) and brain activation dur-
ing go trials in an event-related analysis. Each block contained 
an average of 9 no-go trials and 41 go trials, and each trial 
lasted 1 s. The intertrial interval (ITI) was jittered according to 
a random gamma distribution (M = 0.5 s). Each block (50 tri-
als and ITIs) lasted 75 s, and blocks were separated by 12-s 
rest periods. The blocks were divided across four fMRI runs.

After completing this task, participants were removed  
from the scanner and brought into a quiet testing room for the 
duration of the session. Participants completed measures of 
demographics, smoking history, waking hours, nicotine depen-
dence (Fagerström Test of Nicotine Dependence; Heatherton, 
Kozlowski, Frecker, & Fagerström, 1991), and smoking urges 
(Questionnaire on Smoking Urges; Tiffany & Drobes, 1991), 
in addition to several other questionnaires not relevant to the 
hypotheses tested here. Participants who did not have or pre-
ferred not to use their own cell phones were provided with and 
instructed to use a prepaid phone. Finally, participants were 
instructed in the use of text messages to receive and respond to 
experience-sampling prompts, and successfully completed a 
practice prompt.

Experience sampling. Following the scanning session, and 
beginning 1 day prior to their quit date, participants received 
prompts via text message eight times per day for 21 consecu-
tive days. The first text prompt on each day was sent 15 min 

fMRI Session
•  Response Inhibition
•  Exhaled CO
•  Baseline Surveys

Experience Sampling
•  Smoking
•  Craving

End-Point Session
•  Exhaled CO
•  End-Point Surveys

fMRI + Exhaled CO Exhaled CO

Experience Sampling (8× per day)

Intervention
Begins

Cessation
Begins

1 Week

Fig. 1. Timeline of the experiment. The baseline (scanning) session occurred following registration in a 
smoking-cessation program but prior to smoking reduction. During this session, participants performed the 
functional MRI (fMRI) response-inhibition (go/no-go) task and completed baseline measures of self-reported 
smoking; exhaled carbon dioxide (CO) was also measured. The experience-sampling phase began the day 
prior to the targeted quit date and continued for 21 consecutive days. Participants reported smoking and 
cravings at eight time points that were evenly spaced between wake-up time and bedtime. During the end-
point session, which occurred approximately 4 weeks following the targeted quit date, additional surveys 
were administered, and exhaled CO was measured.
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after morning rise, the last prompt was sent 15 min before bed-
time, and the other six were evenly distributed throughout the 
day. Rise times and bedtimes were adjusted for each partici-
pant for weekdays and weekends. The interprompt interval 
varied across subjects between 1 hr 50 m and 2 hr 25 m.

At each prompt, participants responded to three questions: 
“How many cigarettes have you smoked since the previous 
signal?” (numerical response), “How much are you craving a 
cigarette right now?” (0 = not at all, 1 = a little, 2 = somewhat, 
3 = a lot, 4 = extremely), and “Overall, how is your mood right 
now?” (0 = extremely negative, 1 = somewhat negative, 2 = 
neutral, 3 = somewhat positive, 4 = extremely positive). Par-
ticipants responded to all three questions with a single text 
message back to the experimenters. See the Supplemental Text 
(Supplementary Methods) in the Supplemental Material avail-
able online for further details.

End-point session. An end-point session was scheduled within 
7 days of the end of the 21-day experience-sampling period. 
Exhaled CO was reassessed along with nicotine dependence 
(Fagerström Test of Nicotine Dependence) and smoking urges 
(Questionnaire on Smoking Urges). Participants were compen-
sated $1 for each text-message response (M = $141, SD = $38).

fMRI data acquisition and analysis
Brain-imaging data were acquired on a 3-T Siemens Trio 
scanner at the UCLA Ahmanson-Lovelace Brainmapping 

Center using standard data-acquisition and preprocessing 
steps (see the Supplemental Text in the Supplemental Mate-
rial). The main effect of response inhibition was defined 
using a linear contrast for each participant (i.e., no-go > go). 
Contrast images were averaged across runs for each partici-
pant and then entered into a random-effects analysis at the 
group level. We constructed regions of interest (ROIs;  
Fig. 3) for the rIFG (pars triangularis, pars orbitalis, and pars 
opercularis; Aron et al., 2004), basal ganglia (encompassing 
caudate, putamen, and globus pallidus; Williams et al., 
2006), and pre-SMA (y > 0; Aron & Poldrack, 2006) 
using the Automated Anatomical Labeling (AAL) toolbox  
(Tzourio-Mazoyer et al., 2002) within the Wake Forest Uni-
versity Pickatlas (Maldjian, Laurienti, Kraft, & Burdette, 
2003). Also using AAL, we constructed control ROIs for dis-
criminant validity in the bilateral precuneus and amygdala. 
These regions were chosen to represent one cortical and one 
subcortical region for which activation is often observed in 
cognitive neuroscience tasks but not typically during 
response inhibition. Analyses based on ROIs used a two-
tailed significance threshold of .05.

Experience-sampling data-analysis strategy
Multilevel linear modeling was used to address the nested 
nature of the experience-sampling data (HLM 6; Scientific 
Software International, Lincolnwood, IL; Raudenbush,  
Bryk, Cheong, & Congdon, 2004). A three-level model was 

Push for all
but X

L

N

T

V

X

“go”

“go”

“go”

“go”
Trial Duration = 1 s

Intertrial Interval ~0.5 s
Response-
Inhibition Trial
(“no-go”)

Form a Prepotent
Response

Fig. 2. The go/no-go task. Participants responded using the lever whenever the letter L, N, T, 
or V appeared (go trials) and withheld a response when the letter X appeared (no-go trials). In 
an event-related analysis, a neural measure of response inhibition was defined as the difference 
between brain activation during successful no-go trials (overriding the prepotent “go” response) 
and brain activation during go trials. Each of 12 blocks contained fifty 1-s trials (~41 go trials and 
~9 no-go trials) separated by gamma-distributed jitter (M = 0.5 s).
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constructed with time points (Level 1) nested within days 
(Level 2) nested within participants (Level 3). This model 
allowed us to examine the time-lagged relationship between 
craving and smoking within days while accounting for the 
nested structure of the data. The primary dependent measure 
of smoking was nonnormally distributed because it was 
reported as a count at each time point. Accordingly, we used a 
Poisson model with a log link function at the first level. Thus, 
all parameters are reported in log-expected likelihood units. 
Significance values were calculated using estimates of stan-
dard errors that are robust to violations of sphericity (see Sup-
plemental Text in the Supplemental Material).

Integration of fMRI and  
experience-sampling data
To assess everyday response inhibition, we estimated the 
prospective relationship between craving for a cigarette at 
one time point and smoking at the subsequent time point. The 
magnitude of the relationship between these measures pro-
vided an ecological measure of response inhibition because 
cravings are among the primary impulses that must be  
regulated in successful smoking cessation (Allen, Bade,  
Hatsukami, & Center, 2008; Shiffman et al., 1997). To assess 
the relationship between laboratory neural and real-world 
behavioral measures of response inhibition, we imported 
neural activation parameters from the fMRI task into the 

HLM model as a person-level (Level 3) moderator of the 
slope between past craving and subsequent smoking. We 
entered three anatomically defined ROIs (rIFG, basal gan-
glia, and pre-SMA; Fig. 3) into separate analyses because 
they were multicollinear during the contrast of interest (no-
go > go). The two control ROIs (amygdala and precuneus) 
were also entered separately for discriminant validity. 
Finally, we completed an exploratory whole-brain search for 
regions that predicted smoking reductions and subjected 
these results to a cross-validation analysis (see Supplemental 
Text in the Supplemental Material).

Results
Behavioral responses to the go/no-go task

Participants completed 108 no-go and 492 go trials across 12 
go/no-go blocks. The error rate on no-go trials was 4.6%. 
Error trials were included in the model but not examined 
because of insufficient N. The mean response time on go trials 
was 547.9 ms (SD = 160.5).

Experience-sampling response rates
Participants responded to 84% of the prompts during the 
experience-sampling phase of the study (~6.7 responses out of 
8 prompts daily). Most responses were sent within 23 min of 
the signal (SD = 44 min). For a given participant, a day was 
excluded if it contained fewer than four responses. In total,  
90 days were excluded (M = 3.33 per participant). Robustness 
analyses suggest that the missing data did not affect the results 
(see Supplemental Text in the Supplemental Material). There 
were a total of 3,811 Level 1 observations (time points within 
days), 477 Level 2 observations (days within participants), 
and 27 Level 3 observations (participants) in our multilevel 
model.

Smoking and craving during  
experience sampling
Participants smoked 20.2 cigarettes per day (SD = 9.4) at 
baseline and 5.2 cigarettes per day (SD = 5.4) at the end point 
(mean change = 15.0), t(26) = 7.62, p < .01. Nicotine depen-
dence and urges also decreased significantly (Table 1). 
Exhaled CO was marginally reduced, t(26) = 1.94, p = .06 
(Table 1). The relatively high rate of lapse is common for 
smokers in the early weeks of a quitting attempt (Shiffman  
et al., 2007).

There was a positive within-day relationship between crav-
ing at one time point and smoking at the next when craving 
was entered alone into the model (i.e., without neural activa-
tions; log-expectation γ = .19, SE = .08), t(476) = 2.14, p < .05. 
Reductions in the number of cigarettes smoked per day were 
inversely related to the daily craving-smoking link (see 

Basal Ganglia (Bilateral) Pre-Supplementary Motor Area

Inferior Frontal Gyrus

Fig. 3. The a priori anatomical target regions of interest from the Automated 
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The basal 
ganglia comprised the caudate, putamen, and globus pallidus; the pre-
supplementary motor area was defined using the AAL and was restricted to 
be anterior to the anterior commissure (i.e., Montreal Neurological Institute 
y coordinates > 0); and the right inferior frontal gyrus was defined according 
to the AAL pars opercularis, triangularis, and orbitalis.
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Supplemental Text in the Supplemental Material for analysis 
of the relationship between the craving-smoking slope and 
smoking reductions).

Predicting everyday response inhibition from 
neuroimaging data
To examine the association between neural activation at base-
line and longitudinal outcomes, we extracted activations from 
the no-go > go contrast for anatomically defined ROIs in the 
IFG, basal ganglia, and pre-SMA (Fig. 3), as well as the precu-
neus and amygdala control ROIs (all bilaterally). These acti-
vations were used as moderators of the within-day relationship 
between craving at time i and smoking at time i + 1. As in prior 
research (e.g., Wager et al., 2005), all target regions were sig-
nificantly more active during no-go than during go trials (all 
ps < .01, corrected for multiple comparisons) and none of the 
control ROIs were differentially active (all ps > .2). Because 
of multicollinearity among the target ROIs (all rs > .6, all ps < 
.01), each ROI was entered into its own model with no other 
neural predictors. All models controlled for the linear decline 
in smoking across days, a quadratic pattern within days 
(increased smoking in the afternoon and evening compared 
with the morning), and baseline nicotine dependence. The 
results remained unchanged with age entered as a covariate.

There was an overall positive relationship between craving at 
time i and smoking at time i + 1. The IFG, basal ganglia, and 
pre-SMA ROIs each significantly and negatively moderated that 
slope (Table 2); greater activity in these regions during the labo-
ratory inhibition task related to attenuation of the link between 
craving and subsequent smoking in the real world. Though crav-
ings were followed by increased smoking on average, partici-
pants who showed more inhibition-related activation in the 
target ROIs at baseline showed less coupling between cravings 
and later smoking. The moderating effect for the rIFG ROI is 
depicted in Figure 4, which indicates that individuals with low 
activation in rIFG (1 SD below the mean) in the no-go > go con-
trast showed a strong positive relationship between cravings and 

subsequent smoking, simple slope (log units) = 0.53, t(25) = 
2.79, p < .01 (calculation following Bauer & Curran, 2005). 
Individuals at the mean showed a modest positive (though non-
significant) relationship, simple slope (log units) = 0.25, t(25) = 
1.20, n.s., and individuals with high activation (1 SD above the 
mean) showed no relationship between craving and smoking, 
simple slope (log units) = −0.04, t(25) = 0.21, n.s. In other words, 
an individual with average cravings on an average day would be 
expected to decrease his or her smoking by 33.6% for each stan-
dard deviation increase in rIFG activation during response inhi-
bition at baseline; this translates to an increase of 4.48 cigarettes 
per day for the average subject. Within the basal ganglia ROI, 
activation in bilateral putamen and left caudate significantly 
moderated the craving-smoking link (see Supplemental Text in 
the Supplemental Material for details). Activity in right amyg-
dala (a control ROI) positively moderated the relationship, such 
that individuals with higher right amygdala activation during 
response inhibition at baseline were more likely to smoke given 
high prior cravings (Table 2). None of the other control ROIs 
was a significant moderator of the craving-smoking link.

We also examined the relationship between activity in each 
ROI and long-term cessation success (i.e., across 4 weeks). 
Only activity in basal ganglia, and not in the other two ROIs, 
predicted long-term reductions in smoking as measured by 
change in exhaled CO (Montreal Neurological Institute coor-
dinates: x = 30, y = 5, z = 4; 86-voxel extent, t = 5.02, false-
detection-rate-corrected p < .05; see Supplemental Text, Table 
S1, and Fig. S1 in the Supplemental Material). This result was 
further supported by a predictive cross-validation analysis (see 
Fig. S2 in the Supplemental Material).

Table 1. Mean Change on Smoking-Related Measures

Measure Baseline End Point Change

Global smoking self-report 
(no. cigarettes/day)

20.24 (9.36) 5.17 (5.45) 15.07** (10.28)

Exhaled carbon monoxide 18.93 (11.65) 13.44 (10.89) 5.49† (14.70)
FTND 6.37 (2.04) 2.63 (2.62) 3.74** (2.49)
QSU: positive smoking 

urges
4.82 (1.18) 2.54 (1.57) 2.28** (1.50)

QSU: negative smoking 
urges

3.24 (1.21) 2.00 (0.97) 1.24** (1.35)

Note: Standard deviations are given in parentheses. N = 27. FTND = 
Fagerström Test of Nicotine Dependence (Heatherton, Kozlowski, Frecker, 
& Fagerström, 1991); QSU = Questionnaire on Smoking Urges (Tiffany & 
Drobes, 1991).
†p = .06. **p < .01.

Table 2. Regression Parameters From the Hierarchical Linear 
Model Predicting Expected Smoking at Each Time Point

Region
Overall  

intercept
Slope of  

prior cravings

Moderation of 
craving slope by 
brain activation

Target regions
 Right IFG 0.51 (5.35) 0.24 (0.20) −0.29* (0.12)
 Left IFG 0.51 (4.64) 0.18 (0.15) −0.23** (0.05)
 Right pre-SMA 0.50 (5.60) 0.19 (0.18) −0.20* (0.09)
 Left pre-SMA 0.50 (5.45) 0.26* (0.12) −0.23* (0.11)
 Right basal ganglia 0.54 (4.96) 0.31* (0.14) −0.27* (0.12)
 Left basal ganglia 0.52 (4.99) 0.25* (0.12) −0.32** (0.12)
Control regions
 Right amygdala 0.51 (5.22) 0.24* (0.11) 0.22* (0.09)
 Left amygdala 0.50 (5.89) 0.16 (0.17) 0.03 (0.07)
 Right precuneus 0.49 (5.82) 0.19 (0.20) 0.11 (0.08)
 Left precuneus 0.50 (6.06) 0.19 (0.20) 0.11 (0.08)

Note: All parameters are reported in natural log units. Standard errors are 
given in parentheses. All models controlled for the linear decline in  
smoking across days, the negative quadratic pattern within days, and base-
line nicotine dependence. IFG = inferior frontal gyrus; pre-SMA =  
pre-supplementary motor area.
*p < .05. **p < .01.
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Discussion

This study investigated the neural underpinnings of the brief, 
recurring episodes of everyday self-control that are integral  
to successful goal pursuit. We employed a joint fMRI/ 
experience-sampling approach to link neuroimaging and eco-
logical methods (cf. Eisenberger, Gable, & Lieberman, 2007). 
The results support the notion that laboratory neurocognitive 
measures of response inhibition relate meaningfully to real-
world instances of self-control. Activation in three regions that 
have been consistently associated with response inhibition in 
laboratory go/no-go tasks—rIFG, pre-SMA, and basal gan-
glia—was related to attenuating the link between cigarette 
craving and subsequent smoking. More generally, we demon-
strated that neural activations moderated the relationship 
between two momentary measures acquired in the real world.

These results add to emerging evidence supporting the pre-
dictive power of brain-imaging data. In contrast to traditional 
approaches, in which brain activation is modeled as a depen-
dent measure regressed on time-course variables, the brain-
as-predictor approach employed here models brain activation 
as an independent measure that may account for unexplained 
variance in other outcomes (Bandettini, 2009). Variants of this 
approach have been used to classify participants’ visual- 
system activation into two categories (Haxby et al., 2001) and 
to predict decision outcomes of individual participants given a 

set of four choices (Soon, Brass, Heinze, & Haynes, 2008). 
More recently, we built upon these findings by showing that 
neural activation during exposure to a persuasive message pre-
dicted health-behavior change a week later (Falk, Berkman, 
Mann, Harrison, & Lieberman, 2010). The present study 
extended the brain-as-predictor approach further still by dem-
onstrating that brain-imaging data had between-subjects pre-
dictive validity regarding an important health behavior over a 
span of 4 weeks and within-subjects discriminant validity in 
predicting a fine-grained self-regulatory process.

The present study also has several substantive implications 
for understanding the neural systems involved in smoking ces-
sation. Though the rIFG, pre-SMA, and basal ganglia had 
been implicated in previous laboratory studies of response 
inhibition (e.g., Wager et al., 2005), and response-inhibition 
performance in the laboratory had been associated with addic-
tion outcomes (e.g., Monterosso et al., 2005), it remained 
unclear whether brief response inhibition during the labora-
tory task relies on the same neural systems as do more pro-
longed forms of response inhibition, such as regulation of 
cravings for cigarettes across a period of weeks. Here, we 
found that the extent of neural activation in stopping a prepo-
tent motor response (i.e., no-go trials) was related to success at 
repeatedly preventing a habitual response (i.e., smoking). This 
suggests that some of the interventions that have been shown 
to improve response inhibition in the laboratory (e.g., Muraven, 
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Fig. 4. Activation in right inferior frontal gyrus (rIFG) in the no-go > go contrast as a moderator of the 
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and low (1 SD below the mean) rIFG activation in the contrast.
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2010) may also improve real-world forms of response inhibi-
tion (Berkman, Burklund, & Lieberman, 2009). Further, the 
fact that baseline activation in these regions was specifically 
related to the regulation of cravings on a daily basis hints at the 
diagnostic utility of neuroimaging data in smoking cessation. 
For example, it may be possible to develop tailored smoking-
cessation programs targeting craving regulation in individuals 
with relatively low baseline response-inhibition capacity. It is 
important to note that response-inhibition capacity is only one 
of many neurocognitive skills that are likely to be critical  
to effective smoking cessation (see, e.g., Hare, Camerer, & 
Rangel, 2009, on the modulation of the ventromedial prefron-
tal cortex valuation system during self-control).

Among all three regions that were related to an attenuated 
link between craving and smoking, only the basal ganglia also 
predicted overall reductions in smoking across the 1st month of 
cessation. It may be that a broad network including bilateral 
IFG, pre-SMA, and basal ganglia is involved in discrete 
instances of response inhibition, such as regulation of momen-
tary cravings, whereas a subset of this network or a distinct net-
work (including basal ganglia and other regions) is involved in 
overall smoking change (see Supplemental Text in the Supple-
mental Material). To the extent that overall change in smoking 
involves not only response inhibition but also many other pro-
cesses, it makes sense that a contrast that isolates only response- 
inhibition-related activity to the exclusion of other processes 
would not relate to global smoking change. It is possible that the 
basal ganglia are active across a more general set of processes 
because of their direct anatomical involvement in coordinating 
motor actions. This would be consistent with the finding that 
both the caudate and the putamen contributed to the attenuated 
craving-smoking link. In this view, it makes sense that the basal 
ganglia predict overall smoking change better than the other 
members of the response-inhibition network do, as activation of 
the latter regions may be more specific to response inhibition 
and less sensitive to other processes.

The present study represents a step toward increasing the 
integration of functional neuroimaging methods, such as 
fMRI, with ecological methods, such as experience sampling. 
We linked across neurocognitive and behavioral measures of 
response inhibition in the domain of smoking cessation; we 
investigated merely one process within one health-relevant 
domain. This research yielded valuable insights about the 
mechanisms of response inhibition that would otherwise have 
been difficult or impossible to obtain. Yet within the domain of 
smoking cessation, there are several other central processes 
(e.g., goal maintenance, attention regulation) whose investiga-
tion using these methods might yield equally valuable insights 
(Berkman & Lieberman, 2009). The present investigation 
highlights the benefits of this approach, including the ability to 
connect otherwise-decontextualized neuroimaging data to the 
real world and to probe the temporal extent of processes of 
interest, and paves the way for future research to capitalize on 
the potential for this approach to forge links across measure-
ment modalities.
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Supplementary Methods 

fMRI data acquisition and analysis 

 Participants were situated in the scanner, where foam padding was placed around their 

heads to reduce motion.  Stimuli were presented on LCD goggles, and responses were recorded 

on a magnet-safe joystick placed in the right hand (Resonance Technology, Northridge, CA, 

USA).  Participants responded to each go trial by pushing or pulling a lever then clicking a 

button at the top of the lever.  Response time was computed as the latency between stimulus 

onset and the button click, errors were determined according to trial type, and distance and 

velocity were calculated based on the position of the lever at the time of the button click. 

 High-resolution structural T2-weighted echo-planar images (spin-echo; TR = 5000 ms; 

TE = 34 ms; matrix size 128 x 128; 34 sagittal slices; FOV = 192mm; 4 mm thick) were acquired 

coplanar with the functional scans.  Four functional scans lasting 6:30, 5:46, 5:46 and 5:00 were 

acquired during the task (echo-planar T2*-weighted gradient-echo, TR = 2000 ms, TE = 30 ms, 

flip angle = 90°, matrix size 64 x 64, 34 axial slices, FOV = 192 mm; 4 mm thick), totaling 692 

functional volumes. 

 The imaging data were analyzed using a combination of FSL tools (FMRIB Software 

Library; Oxford University, Oxford, UK) and SPM8 (Wellcome Department of Cognitive 

Neurology, Institute for Neurology, London, UK).  The preprocessing stream for the images was 

as follows.  All images were brain-extracted using BET (FSL’s Brain Extraction Tool) and 

realigned within runs using MCFLIRT (FSL’s Motion Correction using FMRIB's Linear Image 

Registration Tool), then checked for residual motion and noise spikes using a custom automated 

diagnostic tool (thresholded at 2mm motion or 2% global signal change from one image to the 

next).  In SPM8, all functional and anatomical images were reoriented to set the origin to the 
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anterior commissure and the horizontal (y) axis parallel to the AC-PC line.  Also in SPM8, 

functional images were corrected for slice acquisition timing differences within volumes, 

realigned within and between runs to correct for residual head motion, and coregistered to the 

matched-bandwidth structural scan using a 6-parameter rigid body transformation. The 

coregistered structural scan was then normalized into the Montreal Neurological Institute (MNI) 

standard stereotactic space and the resulting parameters were applied to all functional images.  

Finally, the normalized functional images were smoothed using an 8 mm full width at half 

maximum Gaussian kernel.   

 One run from each of two participants was removed due to motion.  Data from three 

other participants contained motion spikes that were statistically removed using regressors 

corresponding to the affected scans. 

 The design was modeled as an event-related within-subjects one-way ANOVA with 

response inhibition as a factor with two levels: go and no-go. An implicit baseline condition was 

comprised of the twelve-second fixation periods that followed each block.  Each trial was 

modeled as an event with 1-second duration and convolved with the canonical hemodynamic 

response. Temporal autocorrelations in the functional data were addressed using a first-order 

auto-regressive error structure.  

 We used a Monte Carlo simulation (AlphaSim; distributed as part of the AFNI Software 

Package, Medical College of Wisconsin, Milwaukee, WI) to determine that the minimum cluster 

size necessary to maintain a false detection rate of 5% for a whole-brain search of the [no-go > 

go] contrast was 20 3x3x3mm voxels combined with a voxel-wise threshold of .001. All 

functional imaging results are reported in MNI coordinates. 

Experience sampling 
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 Participants could silence or disable their phones at their discretion.  In the event that they 

were unable to respond to a prompt before the arrival of the subsequent prompt they were 

instructed to respond only to the most recent prompt.  In other words, participants had roughly 

two hours to respond to each prompt.  Participants were sent a reminder text message or received 

a phone call if their response rate dropped below 50% for a 24-hour period. 

 The text message prompts were sent and received through an automated web-based 

service (RedOxygen Pty. Ltd., Brisbane, Queensland, Australia).  Records including the 

timestamp and content of each message that was sent and received were downloaded from the 

RedOxygen website. 

 The Freedom From Smoking cessation program was ongoing from two weeks before the 

quit date until six weeks following the quit date.  Thus, all participants were enrolled in the 

program for the entire duration of the experience sampling phase of the study. 

Time-series data often violates the assumption of sphericity among the dependent 

measures.  To test for this, we used the Hierarchical Multivariate Linear Modeling module of 

HLM6 to run a nested set of models.  The most unrestricted model allowed for all separate 

variances and covariances within the 8x8 within-day variance-covariance matrix, and more 

restrictive variance structures such as identical variances but unique covariances and first-order 

auto-regressive were nested within that model.  Deviance change tests suggested that sphericity 

was met within-days.  Nonetheless, we used robust estimates of standard errors with the 

assumption of over-dispersion to conservatively guard against violations of normality and 

sphericity (Zeger, Liang, & Albert, 1988). 

Integration of fMRI and experience sampling data 
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 To assess which inhibition-related neural activations had prospective predictive value of 

smoking cessation outcomes, we identified voxels that correlated with overall smoking change 

from baseline to endpoint within a functional ROI based on significant activations in the no-go > 

go contrast.  This is a relatively conservative approach because these voxels will have reduced 

variance due to their restricted range (Lieberman, Berkman, & Wager, 2009).  False detection 

rate of .05 was achieved on this analysis using a combined voxel-wise threshold of .01 for each 

of the conjoined analyses together with a cluster-extent threshold of 20 voxels (Kampe, Frith, & 

Frith, 2003; Ochsner, Hughes, Robertson, Cooper, & Gabrieli, 2009).  To further bolster the 

predictive power by testing their generalizability to new data, results from this analysis were 

entered into a leave-one-out cross-validation analysis (Falk, Berkman, Mann, Harrison, & 

Lieberman, 2010; Stone, 1974).  This analysis identified regions in which activation during 

response inhibition at baseline was predictive of subsequent global success at smoking cessation 

across a four-week period. 

Supplementary Results 

Smoking change from baseline to endpoint 

 Within days, there was a positive relationship between craving at one time point and 

smoking at the next when craving was entered alone into the model (i.e. without neural 

activations; log-expectation γ = .19, SE = .08, t(476) = 2.14, p < .05).  Individuals in the upper 

tertile of this everyday craving-smoking relationship (i.e. those with a strong positive 

relationship) reduced smoking significantly less (M= 8.50 cigarette reduction/day) than those in 

the lower tertile (i.e. those with a weak or no relationship between craving and smoking; 

M=18.44 cigarette reduction/day, t24=2.22, p<.05). 

Predicting everyday response inhibition from neuroimaging data 



    EVERYDAY SELF‐CONTROL       S6 

To explore the differential contributions of the caudate and putamen within the basal 

ganglia, we ran the analysis separately for left and right ROIs of each of those regions based on 

the AAL toolbox (Tzourio-Mazoyer, et al., 2002).  Activation in the left caudate (log-γ = -.20, 

p<.04) and the left and right putamen (log-γs = -.17, -.21, ps<.05) moderated the link between 

craving and smoking.  The right caudate slope (log-γ = -.16) was not significantly different from 

the left caudate slope, but did not meet our significance threshold (p<.14).  Together, activation 

in the bilateral basal ganglia during response inhibition significantly moderated the relationship 

between craving and smoking (see Table 2). 

We ran another set of models to test whether the moderation of the craving-smoking link 

by activation in the ROIs was higher at greater levels of craving compared to lower levels of 

craving.  To do this, we created a variable that coded for whether cravings were high (3 or 4 out 

of 4) or low (0, 1 or 2 out of 4), then generated the interaction term between mean-centered 

versions of this variable and the reports of prior craving.  Conceptually, the slope between this 

variable and smoking tests whether high levels of craving were more related to smoking than low 

levels of craving.  We then tested whether this interaction variable was significantly moderated 

by activation in our ROIs, conceptually testing whether the moderation of the craving-smoking 

link by brain activation was moderated by whether cravings were high or low.  The results of 

these tests support the notion that the moderation of the craving-smoking link by neural 

activation was higher at relatively higher levels of craving: the moderation was significantly 

greater at high levels of craving (compared to low levels) for all six ROIs (all γs > .2, all p<.05). 

Predicting global smoking change from neuroimaging data 

 We used a functional localizer to identify voxels associated with response inhibition (i.e. 

[no-go > go]), then searched within these for voxels that were also associated with change in 
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exhaled carbon monoxide.  The only regions that survived this analysis were two clusters in the 

right basal ganglia, one cluster in the fusiform gyrus, and one cluster on the occipital pole (Table 

S1; Figure S1).  A leave-one-out cross-validation procedure was used to extend the 

generalizability of this result to new samples.  In this procedure, each participant’s change in CO 

from baseline to endpoint was predicted from his or her right basal ganglia activation in [no-go > 

go] based on a linear statistical model from all other participants.  Across iterations, there was a 

significant positive correlation between predicted and actual CO change, suggesting predictive 

validity in the neuroimaging data (cross-validated r = .40, R2 = 16%, p < .05; Figure S2). 

Robustness to missing data 

 It seems possible that smokers attempting to quit might under-report smoking lapses, thus 

it is important to check that this potential systematic bias in the missing data (i.e missing not-at-

random) does not affect the results.  To check the robustness of our data, we generated simulated 

data under varying degrees of the assumption that participants systematically smoked more when 

they missed a smoking report.  We simulated the data by computing the mean and standard 

deviation of daily smoking per participant and replaced instances of missing data with these 

imputed data.  We note that this is a highly conservative test of the possibility of under-reporting 

of smoking because it assumes that each instance of missing data was counted as a lapse.  Even 

if attempting quitters tended to under-report lapses, it still is unlikely that every missed report 

corresponded to a lapse. 

We re-computed the parameter estimates for each of the key ROIs (IFG, preSMA, and 

basal ganglia) assuming that participants did not smoke more during missed responses compared 

to completed responses (mean), participants smoked slightly more during missed responses 

compared to completed responses (+1 SD), and participants smoked significantly more during 
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missed responses (+2 SD).  In every case, the parameter estimates are slightly attenuated though 

still significant when missing data are imputed with mean, moderate, and high smoking.  None of 

the parameter estimates fall below our significance threshold of p<.05, and none change 

significantly from the value reported in Table 2. 

Also, the hypothesis that the parameter estimates are robust to this violation is further 

supported by the fact that the mean craving at time points immediately prior to completed 

responses (M=1.73) is not significantly different from the mean craving at time points 

immediately prior to missed responses (M=1.72, p>.7).  Both of these analyses demonstrate that 

missing data did not impact the slope between craving and subsequent smoking. 

Supplementary Discussion 

 Of our three ROIs commonly involved in response inhibition, only basal ganglia 

activation predicted long-term success in smoking cessation, but all three predicted successful 

outcomes of the smaller everyday battles between craving and self-control.  And the outcomes of 

these battles—the battles to prevent craving becoming smoking—in turn related to the outcome 

of the war in terms of overall daily cigarette reduction.  The role of rIFG and SMA in these 

struggles would have been lost if we had only examined the link between neural activation and 

overall success. 
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Figure S1.  Regions active during the contrast of no-go > go that also correlated with global 

smoking change (CO from baseline to endpoint).  These included the basal ganglia (top; peak 

MNI: 30 5 4), fusiform gyrus (bottom; -39 -64 -11), and occipital pole (not shown).  All 

activations are FDR corrected at .05. 

 

 



    EVERYDAY SELF‐CONTROL       S2 

 

 

 

Figure S2.  Correlation between actual exhaled carbon monoxide change (from baseline to 

endpoint) and predictions of change based on neural activation.  Iterative leave-one-out cross-

validated r = .40, p < .04. 

 

 

 

 



  

Table S1 

Regions active during [no-go > go] that correlated with change in 

exhaled CO 

       

Effect Region x y z 

Cluster 

size t-val 

No-go > go & Basal ganglia 30 5 4 86 5.02 

Positive correlation  30 -16 -2 53 5.78 

 Fusiform gyrus -39 -64 -11 20 6.64 

 Occipital pole -24 -94 10 20 7.57 

              

No-go > go & None      

Negative correlation       

       

       

              

       

Note.  N=27.  All regions FDR corrected at .05. 
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